2. Is the acceleration of a simple harmonic oscillator ever
zero? If so, where?

2. The acceleration of a simple harmonic oscillator is momentarily zero as the mass passes through the
equilibrium point. At this point, there is no force on the mass and therefore no acceleration.

7. If a pendulum clock 1s accurate at sea level, will it gain or
lose time when taken to high altitude? Why?

At high altitude, g is slightly smaller than it is at sea level. If g is smaller, then the period 7 of the
pendulum clock will be longer, and the clock will run slow (or lose time).

12. Does a car bounce on its springs faster when it is empty or
when it is fully loaded?

12

Empty. The period of the oscillation of a spring increases with increasing mass, so when the car is
empty the period of the harmonic motion of the springs will be shorter, and the car will bounce

faster.

17. Why can you make water slosh back and forth in a pan only
if you shake the pan at a certain frequency?

17. Ifyou shake the pan at a resonant frequency, standing waves will be set up in the water and it will
slosh back and forth. Shaking the pan at other frequencies will not create large waves. The individual

water molecules will move but not in a coherent way.
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10. (IT) A mass m at the end of a

- - -

spring oscillates with a

frequency of (.83 Hz. When an additional 680-g mass is
added to m, the frequency is 0.60 Hz. What is the value

of m?

10. The spring constant is the same regardless of what mass 1s attached to the spring.

1

k

k

f=y= >

——=mf” =constant —> m [ =m,f, —
2w \'m

4r’

: 0.68ke ) (0.60Hz)’
by e OB RO ) ~[0.74 kg

(0.83Hz) —(0.60Hz)"

(mkg)(0.83 i—[z}2 =(m kg+ 0.68 kg )(0.60 Hz)

R TR

8. (II) Construct a Table indicating the position x of the mass
in Fig. 14-2 at times ¢ = 0,7,37,37, T, and 37T, where T
is the period of oscillation. On a graph of x vs. [, plot these
six points. Now connect these points with a smooth curve.
Based on these simple considerations, does your curve

resemble that of a cosine or sine wave?

8.

The table of data is
shown, along with
the smoothed graph.
Every quarter of a
period, the mass
moves from an
extreme point to the
equilibrium. The

time position
0 -A
T/4 0
T2 A
3T/4 0
T -A
5T/4 0

graph resembles a wave (actually,

the opposite of a cosine wave).

position / A

time/ T




16. (II) The graph of displacement vs. time for a small
mass m at the end of a spring is shown in Fig. 14-30. At
f=0 x=043cm. (a) If m=295g, find the spring
constant, k. (b) Write the equation for displacement x as a
function of time.

X

(.82 cm (0.82 cm

=7 1\
(43 ¢cm
T _/

- 0.69s

FIGURE 14-30 Problem 16.



16. (a) From the graph, the period is 0.69 s. The period and the mass can be used to find the spring

constant.
; ,» 0.0095k
=2;.-«.-\F - k=dr' " 4 ———2-0.7877N/m =[0.79N/m
(0. 695)
(b) From the graph, the amplltude 15 0.82 cm. The phase constant can be found from the initial
conditions.
2
w=digos] =i ¢ |=(0.82cm)cos i : ]
T 0.69
, 0.43
x(0)=(0.82cm)cos ¢=0.43cm — ¢=cos” i +1.02 rad
Because the graph is shifted to the RIGHT from the O-phase cosine, the phase constant must be
subtracted.

X = (U.SZCH}]CDS[%I—I.U] or (0.82cm)cos(9.1¢1-1.0)
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24. (I1) A block of mass m 1s supported by two identical
parallel vertical springs, each with spring
stiffness constant k (Fig. 14-31). What will be
the frequency of vertical oscillation?

MOPIO ME AINAO AEXMO!

FIGURE 14-31 m
Problem 24.

24. Consider the first free-body diagram for the block while it is
at equilibrium, so that the net force is zero. Newton’s F, 1 ]
second law for vertical forces, with up as positive, gives this. ----- .
ZE-=51+FE_”'5‘8'=U — F,+F,=mg i morSten
Now consider the second free-body diagram, in which the I .-
block is displaced a distance x from the equilibrium point.
Each upward force will have increased by an amount —kx,
since x < (0. Again write Newton’s second law for vertical forces.

ZF =T ‘:F;"'Far_”i'g:FA‘LT+F3“E‘:’(‘”?£=—2LT+(Fa-i-Fa—mg)=—2ff_r

This is the general form of a restoring force that produces SHM, with an effective spring constant of
2k . Thus the frequency of vibration is as follows.

1 [2k

2T N m
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37. (II) Agent Arlene devised the following method of
measuring the muzzle velocity of a rifle (Fig. 14-33). She
fires a bullet into a 4.648-kg wooden block resting on a
smooth surface, and attached to a spring of spring constant
k = 1427 N/m. The bullet, whose mass 1s 7.870 g, remains
embedded in the wooden block. She measures the
maximum distance that the block compresses the spring to
be 9.460 cm. What is the speed v of the bullet?

e B

-

! ¥ N W

= D4nllcm -

M+m 1 =




37

We assume that the collision of the bullet and block 1s so quick that there is no significant motion of
the large mass or spring during the collision. Linear momentum is conserved in this collision. The
speed that the combination has right after the collision is the maximum speed of the oscillating
system. Then, the kinetic energy that the combination has right after the collision is stored in the
spring when it is fully compressed, at the amplitude of its motion.

m
— V. = ¥V

¥V
Ian X 0

m+ M

pbrfurt = pu!’L‘..'r —F mv’ﬂ = (”T s Iw )

Lim+ M)V, =ikd — —;(n?+fvf)[ & 1-’D] =Lkl -
) i ) m+ M )

9.460x10™
1:ﬂ=i,/k(nr+,.-14)=( e m)\/(142.?N/m)(?.3m><10'1’kg+4.643kg]

m (7.870x107kg)

= 309.811‘1/5




52, (II) A student wants to use a meter stick as a pendulum.
She plans to drill a small hole through the meter stick
and suspend it from a smooth pin
attached to the wall (Fig. 14-34).
Where in the meter stick should
she drill the hole to obtain the
shortest possible period? How
short an oscillation period can she
obtain with a meter stick in this
way?

FIGURE 14-34
Problem 52.




52. The meter stick used as a pendulum is a physical pendulum. The period is given by Eq. 14-14,
f /
T =21 —f Use the parallel axis theorem to find the moment of inertia about the pin. Express
mgh

the distances from the center of mass.

e [ il emi: 2n( 22\
I =l +mh =i mé +mh™ — T=2rx =2 ikl i - LZ 4k
: = mgh mgh ,}g =8

dTl -

N E .
= zx(g][ﬁ—m] (-gh—zﬂ]:u — h=\%£=02887m

dh h

Il

x=1{—-h=0500-0.2887 =|0.21 I m| from the end

Use the distance for / to calculate the period.

| i)

(&Y 2 1.00m)’ '
Tz—i(g—w] =—H[¢ﬂ+[}.2887mJ =[1.53s

\/g h [9.80m/s’ #0.2887 m




56. (II) A 0.835-kg block oscillates on the end of a spring whose
spring constant is k = 41.0 N/m. The mass moves in a
fluid which offers a resistive force F = —bv, where
b = 0.662N-s/m. (a) What is the period of the motion?
(b) What 1s the fractional decrease in amplitude per cycle?
(¢) Write the displacement as a function of time if at
t =0, x=0, andat t = 1.00s, x = (0.120 m.

56. (a) The period of the motion can be found from Eq. 14-18, giving the angular frequency for the
damped motion.

B L. (41.0N/m) (0.662Nes/m) — 6,996 rad/s

m 4m’ \ (0835kg)  4(0.835kg)’

2 2r

w  6.99%rad/s

(b) Ifthe amplitude at some time is 4, then one cycle later, the amplitude will be 4e™" . Use this
to find the fractional change.

T = 0.898s

_ ; (16625 -5/m)
Ae = 4 " T 1 __(0898s)
. =¥ 2{0E3Ske
fractional change=————=¢ —1 =g 2" —]=¢ ‘%%
A

And so the amplitude decreases by 30% from the previous amplitude, every cycle.

—-1={-0.300




A BB, LA | R Rl L A R AR, | W M B | WY R A AR, IR R R, R A Al L R g Y, | e

(¢) Since the object 1s at the originat ¢ =0, we w;ll use a sine function to express the equation of

motion.
_(682N-g/m) -

x=Ade"sin(wt) — 0.120m= Ae A sm(b 996rad) —
A= — e v 120m = 0273m ; y=b o (0O2NSM) ) oe e

”—I—k 00s) 2m 2(0835kg)

0833k sin(6.996rad)
-(039657 | .
x=(0.273m)e sin[(7.00rad/s)¢]
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61. (III) (a) Show that the total mechanical energy,

= Imv® + 3kx’, as a function of time for a lightly
damped harmonic oscillator is
E = %kAEE (bt _— E[].E fh,-’m}i"
where Ej is the total mechanical energy at £ = (. (Assume
w' == b/2m.) (b) Show that the fractional energy lost per
period 18
AE 2mh 2

E mw, — Q

where wy = Vk/m and Q = mwy/b is called the quality
factor or Q value of the system. A larger O value means the
system can undergo oscillations for a longer time.



b’ k

(a) For the “lightly damped” harmonic oscillator, we have b* < dmk — <— — o=,

dm*  m
We also assume that the object starts to move from maximum displacement, and so
bt t_i b ht bt b
e ’ X By o ’ g ’ g TR ’
x=Ae ""coswt and v=—=——4e " coswi—-wAe *sinwt=—-wAe "sinwi.
dt 2m
b it

E=Llkc® +imv’ =Lkd’e ™ cos’ wi+Lmw A e " sin’ Wi

- 3 o I
1742 F N S Wl v <2 142
=kdje "cos Wi +kAde "sin" wt =3kAdje " =|Ee "

(b) The fractional loss of energy during one period is as follows. Note that we use the

oL b 2 bT bT
approximation that — k@, =— — —<47r — —<I.
2m T 1 n
b B 4T} bt _bT
&EzE(I)—E(H-T)zEﬂe n~Eg ™ =Feg®|l-gn | =
R g
Ee™ 1-e™ o
AE — bI'\ bT b2m |27
E = - =]l—-e " =]—-|1- = = = Q
- — m m o mo
Ee™ L




84. In some diatomic molecules, the force each atom exerts on
the other can be approximated by F = —C/r? + D/,
where r is the atomic separation and C and D are positive
constants. (@) Graph Fvs.r from r = 0.8D/C to r = 4D/C.
(b) Show that equilibrium occurs at r = ry = D/C. (c) Let
Ar=r —ry be a small displacement from equilibrium,
where Ar << ry. Show that for such small displacements,
the motion is approximately simple harmonic, and (d) deter-
mine the force constant. (¢) What is the period of such
motion? [[Hint: Assume one atom is kept at rest.]



84. (a) The graph 1sshown. The

(b)

spreadsheet used for this problem
can be found on the Media
Manager, with filename

“PSE4 ISM CHI14.XLS,” on tab
“Problem 14.84a.”

Equilibrium occurs at the location
where the force is 0. Set the force
equal to 0 and solve for the
separation distance .

c D

F{I:J)z——_l'l'—:;:ﬂ ~—
hooh

C D ;

—=— — Cr’=Dr, —

N ’

1] {

N L

0.5

1 1.5 2 25
r as afraction of D/C

3.5

This does match with the graph, which shows £ =0 atr= D/C.




(c) We find the net force at » =, + Ar. Use the binomial expansion.

N R G VS
—Cr;;‘(H—F] +Ds;1'[l+—}‘}
I i

% 0. i

Bl BB e} Gl o odn) By ohr
% ot % y 5 i L 7

e
17
We see that the net force is proportional to the displacement and in the opposite direction to the

displacement. Thus the motion is simple harmonic.
(d) Since for simple harmonic motion, the general form 1s £ = —kx, we see that for this situation,

¢ |&
the spring constant is given by k = — = =)

fy

F(r,+Ar)==C(r, +Ar)" +D(r,+Ar)”

[—r +2Ar +1, = 3Ar] = EJ[—M] — F(r, +ﬁ:*)=—£3&r

fa o

(e) The period of the motion can be found from Eq. 14-7b.

3
Fedp 2 = i 0
\ % c*




86. Carbon dioxide is a linear molecule. The carbon—oxygen bonds
in this molecule act very much like springs. Figure 14-43 shows
one possible way the oxygen atoms in this molecule can oscil-
late: the oxygen atoms oscillate symmetrically in and out, while
the central carbon atom remains at rest. Hence each oxygen
atom acts like a simple harmonic oscillator with a mass equal
to the mass of an oxygen atom. It is observed that this oscilla-
tion occurs with a frequency of f = 2.83 x 10" Hz. What is
the spring constant of the C— O bond?

@ e d
FIGURE 14-43 — —

Problem 86, the t(} -’rf,,;"@ :“.. ‘{9

CO-, molecule.

86. The effective spring constant is determined by the frequency of vibration and the mass of the
oscillator. Use Eq. 14-7a.
I [k

0 B
/ 27\ m

840 N/m| (3 sig. fig.)

I.GGXIO'ETkg} L

lu

k=47 f*m =47 (2.83x10"Hz(1 6.0011](



