Introduction to *ab-initio* methods and relation to nanomaterials research

George E. Froudakis

Associate Professor Dept. of Chemistry Uni. of Crete - Greece

Why we need theory and modeling ?

Explanation of experimental results

Material testing *in silico*

Designing novel materials

Hierarchy of methods

In past 30 years, computational power (driven by Moore's Law) has increased by over 5 orders of magnitude

What is Quantum Chemistry?

- Quantum Mechanics applied to Atoms and Molecules
- Aim: Understanding of Electronic Structure
- Solution of the electronic Schrödinger equation
- Derived: Properties of Atoms and Molecules

Goal: Insight into chemical phenomena.

Exploring Chemistry with Electronic Structure Methods Second Edition James B. Foresman Æleen Frisch Gaussian, Inc. Pittsburgh, PA

Part 1: Essential Concepts & Techniques

Chapter 1: Computational Models & Model Chemistries	.3
An Overview of Computational Chemistry	.3
Molecular Mechanics	4
Electronic Structure Methods	.5
Model Chemistries	7
Defining Model Chemistries	9
References 1	1

Appendices

Appendix A: The Theoretical Background	253
The Schrödinger Equation	253
The Molecular Hamiltonian	255
Atomic Units	256
The Born-Oppenheimer Approximation	256
Restrictions on the Wavefunction	257
Hartree-Fock Theory	258
Molecular Orbitals	259
Basis Sets	261
The Variational Principle	262
The Roothaan-Hall Equations	263
Open Shell Methods	264
Electron Correlation Methods	265
Configuration Interaction	265
Møller-Plesset Perturbation Theory	267
Density Functional Theory	272
The Complete Basis Set Extrapolation	278
References	282

1

Chapter 5: Basis Set Effects
Minimal Basis Sets
Split Valence Basis Sets
Polarized Basis Sets
Diffuse Functions
High Angular Momentum Basis Sets100
Basis Sets for Post-Third-Row Atoms101
Exercises
References
Chapter 6: Selecting an Appropriate Theoretical Method
Using Semi-Empirical Methods
Limitations of Semi-Empirical Methods
Electron Correlation and Post-SCF Methods
The Limits of Hartree-Fock Theory115
The MPn Methods
Coupled Cluster and Quadratic Configuration Interaction Methods.117
Density Functional Theory Methods118
Resource Usage
Exercises
References 139

Hamiltonian for a system with N-particles

$$\hat{H}(r)\Psi(r) = E\Psi(r)$$

 $\hat{H} = \hat{T} + \hat{V}$

Time-Independent Schrödinger Equation

Sum of kinetic (T) and potential (V) energy

$\hat{T} - \sum^{N} \hat{T} -$	$\sum^{N} \hbar^{2} \nabla^{2} -$	$\sum_{k=1}^{N} \hbar^{2} \left(\partial^{2} \right)$	∂^2	∂^2	Ţ
$I - \sum_{i=1}^{I} I_i - \frac{1}{2}$	$-\sum_{i=1}^{n}\overline{2m_i}\mathbf{v}_i$	$-\sum_{i=1}^{n}\overline{2m_i}\left(\overline{\partial x_i^2}\right)^{-1}$	$-\frac{\partial y_i^2}{\partial y_i^2}$	$\left(\frac{\partial z_i^2}{\partial z_i^2} \right)$	1

Kinetic energy

Laplacian operator

 $\hat{V} = \sum_{i=1}^{N} \sum_{j>1}^{N} V_{ij} = \sum_{i=1}^{N} \sum_{j>1}^{N} \frac{q_i q_j}{r_{ij}}$

Potential energy

$$\begin{split} \psi &= \psi(\overrightarrow{R_{1}}, \overrightarrow{R_{2}}, ..., \overrightarrow{R_{m}}, \overrightarrow{r_{1}}, \overrightarrow{r_{2}}, ..., \overrightarrow{r_{n}}) \\ H &= T_{n} + T_{e} + V_{ee} + V_{nn} + V_{en} \\ T_{n} &= -\sum_{I=1}^{m} \frac{1}{2M_{I}} \nabla_{I}^{2} \\ T_{e} &= -\sum_{i=1}^{n} \frac{1}{2} \nabla_{i}^{2} \\ V_{ee} &= \sum_{i=1}^{n} \sum_{j < i} \frac{1}{\left| \overrightarrow{r_{i}} - \overrightarrow{r_{j}} \right|} \\ V_{nn} &= \sum_{I=1}^{m} \sum_{J < I} \frac{Z_{I} Z_{J}}{\left| \overrightarrow{R_{I}} - \overrightarrow{R}_{J} \right|} \\ V_{en} &= -\sum_{i=1}^{n} \sum_{I=1}^{m} = -\frac{1}{\left| \overrightarrow{r_{i}} - \overrightarrow{R}_{i} \right|} - \frac{1}{\left| \overrightarrow{r_{J}} - \overrightarrow{R}_{J} \right|} \end{split}$$

Born-Oppenheimer Approximation (1927)

• So far, the Hamiltonian contains the following terms:

$$\hat{H} = \hat{T}_n + \hat{T}_e + \hat{V}_{ne} + \hat{V}_{ee} + \hat{V}_{nn}$$

- Since nuclei are much heaver than electrons $(m_n/m_e=1836)$, their velocities are much smaller.
- To a good approximation (error <1/1000*), the Schrödinger equation can be separated into two parts:
 - One part describes the electronic wavefunction for a fixed nuclear geometry.
 - The second describes the nuclear wavefunction, where the electronic energy plays the role of a potential energy.

Born-Oppenheimer Approx. cont.

17

Limitations of the Born-Oppenheimer approximation

• The BO approx. is usually very good, but breaks down when two (or more) electronic states are close in energy at particular nuclear geometries. In such situations, a " non-adiabatic" wavefunction - a product of nuclear and electronic wavefunctions - must be used.

Hartree-Fock Theory

Restricted and Unrestricted Hartree-Fock

Restricted Hartree-Fock (RHF)

For even electron, closed-shell singlet states, electrons in a given MO with α and β spin are constrained to have the same spatial dependence.

Restricted Open-shell Hartree-Fock (ROHF)

The spatial part of the doubly occupied orbitals are restricted to be the same.

Unrestricted Hartree-fock (UHF)

 α and β spinorbitals have different spatial parts. α

Potential energy curves

Figure 4.3 6-31G** potential energy curves for H₂.

Basis sets $\psi(x, y, z) = \sum c_n \Phi_n(x, y, z)$

n

- Mathematical trick : Instead of looking for an unknown functions (ψ) we are searching for coefficients (c).
- "Atoms-in-Molecule" approach: Atomic electron density is only weakly perturbed in formation of molecule
- Hydrogen-like functions centered at atoms in molecule
- Additional functions for specific purposes (polarization, correlation, bonding etc.)

Basis sets: STOs and GTOs

- Slater-Type Orbitals are H like
- Gaussian Type Orbitals
- α: 'exponent'

Basis sets: Why GTOs ?

Situation in molecules:

Atomic centers A,B

- Use of atom-centered GTOs
- Products of two GTOs at centers A, B gives GTO at center E
- Hence: Ease of integration!
- Much faster than with STOs, despite increased number

Standard basis sets: Overview

- STO-NG: N GTO per STO
- Split-valence 6-31+G(*) sets:
 SZ (core)/DZ(valence),
 +: diffuse functions
 *: polarization functions
 - *: polarization functions
 - Z(zeta): Number of contracted functions
- (aug)-cc-(p)VXZ: Correlation-consistent basis sets

- Polarization of atomic density upon formation of chemical bond
- Molecular field breaks atomic symmetry !
- Use of higher angular-momentum functions E.g. p-functions for H , d-functions for C, etc.
- Allows orbitals to change shape

Complete Basis Set limit

basis functions

Configuration Interaction (CI)

• Principles:

Based on HF (or MCSCF) wave function (orbitals) Linear expansion of many-particle wave function:

$$\Psi_{CI} = c_0 \psi_0 + \sum_{ar} c_a^r \psi_a^r + \sum_{\substack{a < b \\ r < s}} c_{ab}^{rs} \psi_{ab}^{rs} + \sum_{\substack{a < b < c \\ r < s < t}} c_{abc}^{rst} \psi_{abc}^{rst} + \dots$$

c: expansion coefficients ($c_0 > 90\%$) Ψ : Slater determinants, ground and excited

CI: Excitation Level

The Hamiltonian matrix in determinant basis

Anregung	$ \Psi_0 angle$	$ \mathbf{S} angle$	$ \mathbf{D} angle$	$ { m T} angle$	$ \mathbf{Q} angle$	
$\langle \Psi_0 $	$ig \langle \Psi_0 ig \hat{H} ig \Psi_0 ig angle$	0	$ig arPhi_0 ig \hat{H} ig { m D} ig)$	0	0	•••
$\langle \mathbf{S} $		$\left< {{\rm S}\left {\hat H} \right { m S}} \right>$	$\langle S \hat{H} D angle$	$\langle \mathbf{S} \left \hat{H} \right \mathbf{T} angle$	0	
$\langle \mathbf{D} $			$\left< {\rm D} \left \hat{H} \right {\rm D} \right>$	$\langle {\rm D} \left \hat{H} \right {\rm T} \rangle$	$\langle \mathrm{D} \hat{H} \mathrm{Q}\rangle$	
$\langle T $				$\left< {\rm T} \left {\hat H} \right {\rm T} \right>$	$\langle \mathbf{T} \hat{H} \mathbf{Q} \rangle$	
$\langle \mathbf{Q} $					$\langle \mathbf{Q} \hat{H} \mathbf{Q} \rangle$	
		÷	:		:	:

- Double excitations couple directly to reference state
- All others couple indirectly (coupled linear equations)
- Strategy: Select important higher excitations !

Full-CI: the computational limitation

Moller-Plesset Perturbation Theory

Electron correlation:

$$V = \sum_{i < j} \frac{1}{r_{ij}} - \sum_{i} v^{HF}$$

 Principles:

 Idea: Electron correlation is a perturbation (<1% of total energy)
 Based on Rayleigh-Schrödinger PT
 Single-reference method !
 Size-consistent.

MPPT: Procedure

- Assume solution of zero-order problem (HF problem): $H_0\Psi_0 = \sum_i f(i)\Psi_0 = E_0^{(0)}\Psi_0$
 - Definition of a perturbing potential :

$$V = \sum_{i < j} \frac{1}{r_{ij}} - \sum_{i} v^{HF}$$

• Total electronic Hamiltonian:

 $H = H_0 + V$

• Apply Rayleigh-Schrödinger PT

nger PT
$$E_i^{(2)} = \sum_{n \neq i} \frac{\left| \left\langle \Psi_i^{(0)} \left| \hat{V} \right| \Psi_n^{(0)} \right\rangle \right|^2}{E_i^{(0)} - E_n^{(0)}}$$

Density Functional Theory

Hohenberg & Kohn* Theorem (1964): The ground state properties of every system are function of its charge density (p)

• Total energy as functional of the electron density:

$$E[\rho] = T[\rho] + U[\rho] + E_{xc}[\rho]$$
$$p(r) = \sum_{i} |\varphi_{i}(r)| \quad :\Phi=\text{ occupied MOs}$$

- T: Kinetic Energy
- U: Coulomb interactions
- xc: Exchange & correlation interactions

* Nobel price 34 1998

DFT: XC functionals

- Local Density Approximation (LDA) No gradient of electron density in E_{xc} Like a uniform electron gas !
- Generalized Gradient Approximation (GGA)
 Gradient corrected density
- Hybrid Functionals
 Becke (B) LYP, B3LYP functionals
 Contain a contribution of HF exchange interaction

