

Liquid Chromatography

- ► long columns (> 1m)
- ► low flow rates (mL/hr)
- packing particles with large diameters (150 µm)
- → low efficiency separations

Gas Chromatography

- → only 20% compounds are suitable. for direct GC (not good for thermally labile and polar compounds)
- gas chromatographic theory (efficiency can be improved by reducing particle size)

Main advancements in HPLC over the last 30 years:

- development of small diameter particles (10, 5, 3, 1 μm)
- improvement in packing narrow columns (4.6-0.32mm i.d.)
- bonded stationary phases
- ► delivery of stable mobile phase flows

Solute retention in LC depends on interactions between:

Interionic and Intermolecular Forces:

	Type of interaction		Dependence of force on distance
Ions and Ions	Ion – ion		1/r ²
Ions and polar molecules	Ion – dipole		1/r ³
Ions and nonpolar molecules	Ion – induced dipole		1/r ⁵
Polar molecules and polar molecules	Dipole – dipole		
Polar molecules and Nonpolar molecules	Dipole – induced dipole	Intermolecular forces	1/r ⁷
Nonpolar molecules and Nonpolar molecules	Induced dipole – induced dipole (London forces)	(van der Waals forces)	

Normal-phase HPLC

(type of adsorption chromatography)

The stationary phase is more polar than the mobile phase

Sationary phase (adsorbent): mostly inorganic polymers hydrated silica-oxygen polymer (silica or silica gel)

hydrated aluminium-oxygen polymer (alumina)

Bonded phases: silica particles with R groups bonded to the surface; R= -CH₃ (C-1), -(CH₂)₃CN

(advantages include: less tailing, rapid changes to mobile phase composition, generally better reproducibility)

Mobile phase: less polar than the stationary phase

Mechanism of retention: solute and solvent molecules compete for "sites" on the stationary phase; to be adsorbed, the solute molecules must first displace a solvent molecule. Silica has discrete adsorption sites:

-OH
-Si-O-Si-

polar stationary phase

Molecules with polar functional groups or capable of H-bonding or polarisable molecules have a strong affinity for the adsorbent surface and will be strongly retained.

Silica gel

(hydrated silicon - oxygen polymer)

Preferred for a number of practical reasons:

- Allows for higher sample loadings
- Less likely to catalyse the decomposition of any sample component

Factors that affect sample retention:

- Surface consists of discrete adsorption sites (-OH)
 -Si-OH grouping is known as a silanol group
- Surface area and average pore diameter
 Porous silica: 100-400 m²/g for spherical particles
 (3-10 μm)
 Mean pore diameter 5 400 nm
 Surface area within pores >>>> external surface area

Limitations:

- 1. Limited pH range (typically used between pH 2-7)
- 2. Retains basic compounds very strongly (i.e. amines)

Normal phase separation of phthalates

10 micron silica, 30 cm x 4 mm 2 ml/min; UV detection 254 nm A: ethyl ethanoate/iso octane 5:95

B: butyl ethanoate/iso octane 5:95

Reversed-phase HPLC

(partition/adsorption chromatography)
The stationary phase is less polar than the mobile phase

Sationary phases:

1. silica particles with hydrocarbon groups (R) bonded to the surface; R= -CH $_3$ (C-1), -C $_8$ H $_{17}$ (C-8), -C $_1$ 8H $_{37}$ (ODS or C-18), -C $_6$ H $_5$

end capping residual silanol groups

 Styrene-divinylbenzene resin (copolymerizing styrene and divinylbenzene) containing suitable hydrocarbon functional groups: C-1 or C-18

stability over a wide pH range

 Hypercarb (a porous graphitic carbon, introduced by Shandon in 1988); stable throughout the whole pH range. Mobile phase: more polar than the stationary phase, e.g. CH₃OH/H₂0.

Mechanism of retention: Solutes are generally eluted in order of polarity, the most polar first. We can think of a reversed phase separation as being a partitioning process.

Illustration of the effects of changing solvent conditions on a reversed-phase column. The sample is an analgesic preparation. Each run is isocratic, and the eluents range from high (30%) methanol to low (12%) methanol: water mixtures. The methanol is a better solvent for these materials than is the water. Conditions: ODS column 0.26×25 cm; eluent methanol (% shown)/water + 0.5% $\rm H_3PO_4$; flow rate 1.0 mL/min; detection ultraviolet light absorption at 250 nm. [Data courtesy The Perkin–Elmer Corporation.]

1. uracil
2. phenol
3. acetophenone
4. nitrobenzene
5. methyl benzoate
6. toluene
50/50 methanol/water
1 ml/min

Reversed phase operation with bonded phases has achieved wide popularity because it has the following advantages:

- The method has a very broad scope that allows samples with wide ranges of polarity to be separated. There is the possibility of using many different bonded phases, producing a very flexible separating system.
- The method uses relatively inexpensive mobile phases, and equilibration of the mobile phase with the column is rapid.
- The mode is generally experimentally easier, faster and more reproducible than other HPLC modes.
- It can be applied for the separation of ionic or ionizable compounds by the use of ion pairing or ion suppression techniques

Ion Suppression HPLC

Ion suppression is used for the separation of weak acids or bases on reversed phase columns.

Principle: suppress the ionization of an acid or the protonation of a base by adjusting the pH, then chromatograph the sample on a reversed phase column (C-18) using methanol or acetonitrile plus an aqueous buffer solution as the mobile phase.

Ion Exchange HPLC

The surface contains ionizable sites: sulphonic acid or quaternary ammonium

$$R^+Y^- + X^- \longrightarrow R^+X^- + Y^-$$
(sationary phase) (solution) (stat.phase) (solution)
$$R^-Y^+ + X^+ \longrightarrow R^-X^+ + Y^+$$
(sationary phase) (solution) (stat.phase) (solution)

Sationary phase:

	Styrene-DVB	Porous layer beads	Bonded silica
Particle size, µm	5-20	30-50	5-10
Capacity	high	low	high
Sample loading	large	small	moderate
pH range	2-14	2-9	2-8
Packing method	slurry	dry	slurry
Efficiency	low ——		- high

Ion Exc	hange Groups		
Type	Active Group	pH Range of Operation	Application Example
Strongly acidic cation exchanger	—so ₃	1-14	Amino acids, inorganic separations
Weakly acidic cation exchanger	-coo-	5-14	Transition elements, organic bases
Strongly basic anion exchanger	For example, $-N(CH_3)_3^+$	1-12	Alkaloids, fatty acids
Weakly basic anion exchanger	For example, DEAE, —C ₂ H ₄ N(C ₂ H ₅) ₂	1 - 9	Organic acids, amino acids

Mobile phase: pH buffer or pH buffer + organic modifier

Selection of HPLC method

Solvent Delivery and Sample Injection

Solvent reservoir

Pressure, Flow and Temperature

HPLC: 25-100 bar; pressure depends on column length, partcile size, viscosity and flow rate of mobile phase.

Pressures in HPLC do not present a hazard (precautions should be taken when

packing columns).

Temperature control is important for reproducible retention times.

Forced air oven, 0.1 °C stability from ambient to 100 °C

Safety considerations

Controlling mobile phase and sample temperature is also important

LOAD

Detectors for HPLC

Important characteristics (listed in random order):

- a. High sensitivity
- b. Low limit of detection (negligible baseline noise)
- c. Large linear dynamic range
- d. Universal or selective responce
- e. Low dead volume
- f. Non-destructive of the sample
- g. Inexpensive to purchase and operate, reliable and easy to operate
- h. Capable of providing information on the identity of the solute
- i. Response independent of mobile phase composition

Detector	Response	C _N g cm ⁻³	Linear range	Flow cell volume, µl
UV-vis absorption	S	10-8	10 ⁴ -10 ⁵	1-8
Fluorescence	S	10 ⁻¹²	10 ³ -10 ⁴	8-25
Conductivity	S	10 ⁻⁷	10 ³ -10 ⁴	1-5
Amperometric	S	10 ⁻¹⁰	10 ⁴ -10 ⁵	0.5-5
Mass spectrometry	S	10-10		
Refractive Index	G	10 ⁻⁶	10 ³ -10 ⁴	5-15

UV/Vis light absorbance detectors

Beer-Lambert Law:
$$A = \varepsilon bc = log \frac{P_o}{P}$$

A: absorbance of solution in cell

ε: molar absorptivity [L cm⁻¹ mol⁻¹]

b: optical path-length through the cell [cm]

c: molar concentration of the solute

Po: light intensity (or power) focused onto the cell

P: light intensity transmitted

(*): applies only to monochromatic radiation

Radiation Source	Wavelength (nm) of emmision lines or emiss range			
Mercury	254 , 313, 365, 405, 436, 546, 578			
Cadmium	229, 326			
Zinc	214, 308			
Magnesium	206			
Deuterium	190-350 (continuum)			
Tungsten	190-700 (continuum)			

Cell design for UV/vis light detectors

Elimination of the liquid lens effects with a tapered flow-cell

Operating characteristics of UV/vis light detectors

→ imperative that the background absorbance of the mobile phase be kept as low as possible if direct detection is to be used (requires knowledge of the UV cut-off wavelengths)

Table 5.3 u.v. Cut-offs for some common solvents and buffers.

Solvent	u.v. Cut-off (nm)	Buffer	u.v. Cut-off (nm)
n-Pentane	190	Acetic acid, 1%	230
Carbon tetrachloride	265	Triethylamine, 1%	235
Methanol	205	Sodium citrate, 10 mm	225
Tetrabydrofuran	230	Sodium acetate, 10 mm	205
Chloroform	245	Tris HCl, 20 mm	204
Acetonitrile	190	Potassium phosphate, 10 mm	190
Dioxane	215	Ammonium bicarbonate, 10 mm	190
Ethanol	210	Sodium chloride, 1 M	208
Ethyl acetate	256	EDTA, disodium, I mm	190
Petroleum ether	210	Sodium dodecyl sulfate, 0.1%	190

- → absorption spectrum of the solute depends, to some extent, on the composition of the mobile phase
- → derivatisation reactions for producing coloured products

Fluorescence detectors

$$F=f(\theta) g(\lambda) I_o \theta_f \varepsilon lc$$

 $f(\theta)$:geometry factor related to the positioning of the detector $g(\lambda)$:wavelength response characteristics of the detector I_0 : intensity of the incident radiation θ_t : quantum yield of the analyte molecule

e: molar absorptivity of the analytel: optical path lengthc: molar concentration of the analyte

Physical processes which can follow the absorption of a photon by a molecule. S denotes a singlet state and T denotes a triplet state. Solid arrows represent processes involving photons, while wavy arrows denote radiationless transitions. A, absorption; F, fluorescence; P, phosphorescence; IC, internal conversion; ISC, intersystem crossing; R, vibrational relaxation.

Disadvantages:

Dependence of fluorescence signal on a range of experimental parameters:

- rightarrow mobile phase pH,
- ► nature of components of the mobile phase,
- ➤ temperature,
- ➤ concentration of analyte,
- and quenching effects.

Advantage:

➤ Affords detection limits which are often 100 times lower than those achieved with UV/vis detection.

Refractive Index detectors

(closest to the ideal universal detector)

Principle: comparison of the RI of the pure mobile phase with the column effluent will indicate the presence of an eluted solute.

-differential refractometers

Characteristics:

moderate sensitivity

temperature sensitive (0.001 oC will give a change of 10-6 RI units) not sensitive to pressure changes generally unsuitable for gradient elution chromatography

1.380

1.380

1.381

1.394

Methylene chloride

Carbon tetrachloride

Ethylene glycol

Chloroform

Toluene

1.424

1.427

1.443

1.466

1.496

Applications:

carbohydrates, alcohols, polymers

Isopropanol

n-Propanol

Methylethylketone

Methylisobutylketone