Φασματοσκοπία με τη χρήση Λέιζερ (2)

Δημήτριος Άγγλος Τμήμα Χημείας, Πανεπιστήμιο Κρήτης και ΙΗΔΛ-ΙΤΕ

anglos@iesl.forth.gr; anglos@chemistry.uoc.gr

- Εισαγωγικά, Εφαρμογές στον πλανήτη Άρη
- Φασματοσκοπία LIBS
- Εφαρμογές στο πεδίο της Πολιτισμικής Κληρονομιάς
- Φορητή οργανολογία

Φασματοσκοπία Λέιζερ

Θεώρηση από τη σκοπιά του λέιζερ και των χαρακτηριστικών του

Curiosity Rover + Science Payload

Courtesy of NASA/JPL-Caltech

Mastcam is a high-definition imager ChemCam is the Chemistry and Camera instrument < **RAD** is the Badiation Assessment Detector instrument **CheMin** is the Chemistry and Mineralogy instrument SAM is the Sample Analysis at Mars instrument **DAN** is the Dynamic Albedo of Neutrons instrument MARDI is the Mars Descent Imager instrument **MAHLI** is the Mars Hand Lens Imager instrument **APXS** is the Alpha Particle X-ray Spectrometer instrument The brush, drill, sieves and scoop are tools on the rover's robotic arm

REMS is the Rover Environmental Monitoring Station

http://www.nasa.gov/mission_pages/msl/index.html

CHEMCAM = LIBS + camera(s)

http://www.msl-chemcam.com/, http://msl-scicorner.jpl.nasa.gov/Instruments/ChemCam/

(1)Centre National d'Etudes Spatiales, CNES, Toulouse (FRANCE)
(2)Los Alamos National Laboratory, LANL, MS-D466, Los Alamos, NM 87545 (USA)
(3)Institut de Recherche en Astrophysique et Planetologie, IRAP, CNRS, Toulouse (FRANCE)
(4)Jet Propulsion Laboratory, JPL, Pasadena, CA (USA)
(5)ALTEN Sud Ouest, Toulouse (FRANCE)

LIBS : Βασικές αρχές της τεχνικής

LIBS : Βασικές αρχές της τεχνικής

Wavelength (nm)

Φάσμα LIBS (Cu, Zn, Pb)

LIBS - Τεχνικά στοιχεία

Παλμοί λέιζερ κατά την ανάλυση LIBS

Διάρκεια παλμού λέιζερ

- 10 δισ-εκατομμυριοστά του sec
- Εκπομπή πλάσματος
- 10 εκατομμυριοστά του sec

Αποτύπωμα δέσμης στην επιφάνεια μετάλλου

Instrument synchronization

Γιατί LIBS ?

Αναλυτικά χαρακτηριστικά

- Εφαρμογή in-situ (χωρίς δειγματοληψία ή προετοιμασία δείγματος)
- Ποιοτική και ποσοτική στοιχειακή ανάλυση
- Ευαισθησία, επιλεκτικότητα
- Ταχύτητα στην ανάλυση
- Υψηλή χωρική ανάλυση, Διαστρωματική ανάλυση
- Μικρο-καταστρεπτική
- Μεταφερόμενη φορητή οργανολογία
- Επιτόπιες μελέτες

Ανάλυση χρωστικών με την τεχνική LIBS

Αυθεντική χρωστική Λευκό του μολύβδου (Pb(OH)₂ · 2PbCO₃) Μεταγενέστερη συντήρηση Λευκό του τιτανίου (ΤίΟ₂)

Ανάλυση χρωστικών σε βυζαντινό χειρόγραφο

(MIET)

Χρωστικές

■ Πράσινο χρώμα : Pb, Sn → lead tin yellow [Pb₂SnO₄]

AI, Si, Na \rightarrow ultramarine blue [Na₇AI₆Si₆O₂₄S₃]

- Λευκό χρώμα : $Pb \rightarrow lead white [Pb(OH)_2 \cdot 2PbCO_3]$
- Κόκκινο χρώμα : Hg → vermilion [HgS]
- Xpu $\sigma \delta \chi \rho \omega \mu \alpha$: Au, Ag, Cu \rightarrow gold silver copper alloy

Ανάλυση LIBS σε ζωγραφικό πίνακα του Greco

"Η βάπτιση" (1566 or 1567)

Τέμπερα σε ξύλο (28×18 cm²) Blue Yellow Green Ιστορικό Μουσείο, Ηράκλειο

Ανάλυση LIBS σε ζωγραφικό πίνακα του Greco

Yellow paint : Pb, Sn

Ανάλυση LIBS σε ζωγραφικό πίνακα του Greco

Επιδράσεις στην επιφάνεια

Σχηματισμός κρατήρα σε διαστρωματική ανάλυση LIBS 50 παλμοί λέιζερ (355nm, 10ns) Μελέτη σχηματισμού κρατήρα Βελτιστοποίηση ανάλυσης

LIBS microscopy for fine feature analysis

Στρωματογραφική ανάλυση με την τεχνική LIBS

Διαδοχικοί παλμοί οδηγούν στην αποτύπωση του στοιχειακού προφίλ στα διαδοχικά στρώματα υλικού

Ανάλυση χρωστικών με τις τεχνικές LIBS, LIF, Raman

Προσδιορισμός χρωστικών και διαστρωματική ανάλυση σε εικόνα του 19ου αιώνα. Προετοιμασία LIBS, LIF, Raman CaSO₄

Φορητή (μεταφερόμενη) διάταξη LIB S

Ανάγκη για φορητότητα

- Immovable artwork
- Large monuments
- Where fast response is needed
- When fast decision-making is needed
- Field surveys
- Economical alternative to large equipment
- Able to serve many users at many places
- User friendly

Ανάπτυξη αναλυτικής συσκευής LIBS

Τυπική εργαστηριακή διάταξη LIBS

Στόχος 1

Εργαστηριακό πρωτότυπο
Test-drive

Εργαστηριακό πρωτότυπο σύστημα LIBS

Στόχος 2

Ολοκλήρωση επι μέρους στοιχείων
Εύχρηστη, απλή αναλυτική συσκευή

Σε συνεργασία με το INSTAP

Αναλυτικό σύστημα LIBS γιά το χαρακτηρισμό αρχαιολογικών αντικειμένων και υλικών με βάση τη στοιχειακή τους σύσταση

Στοιχεία συστήματος

- ✓ Nd:YAG laser (1064nm, 10ns)
- ✓ Grating spectrograph (res. 0.2nm)
- ✓ ICCD detector
- ✓ Optical fiber; Optics
- ✓ Viewing camera
- ✓ Computer

Απλή λειτουργία και ανάλυση δεδομένων μέσω ενιαίου λογισμικού

Λειτουργία συστήματος και ανάλυση δεδομένων

- Calibration
- > Acquisition
- Data analysis

Το LMNTI στο εργαστήριο συντήρησης του INSTAP

Οπτικό τμήμα της συσκευής (Λέιζερ και οπτικά)

LMNTI Επιλογή σημείου ανάλυσης μέσω κάμερας

Ανάλυση μινωικών κοσμημάτων με τη συσκευή LMNTI

Επίχρυσο αντικείμενο από φαγεντιανή

Ανάλυση ανασκαφικών ευρημάτων με τη συσκευή LMNTI

> Πρώτη ύλη : Φαγεντιανή ??

Pb + Ca + Fe → Lead Bead

Είναι βασάλτης ?

Mg + Si → Serpentite

Χαρακτηρισμός επικαλύψεων αργύρου

Rivet from Minoan dagger

Silver decorated glass

Detection of Ag is straightforward revealing the presence of decorative silver coating even in artifacts with heavy surface corrosion

Cm

LMNTI : Ποσοτική ανάλυση αντικειμένων

- Quantitative determination of Sn in bronze through proper calibration of the instrument with reference bronze samples
- Sn content found : < 0.5%

Arch. Museum, Agios Nikolaos, Greece

Στόχος : Φορητή αναλυτική συσκευή LIBS

Αρχαιολογικό Μουσείο, Αρχαία Μεσσήνη (09/2006) Αναλύσεις αρχαιολογικών κραμάτων χαλκού

EC PROMET project September 2006

Εθνικό Μουσείο Δαμασκού, Οκτώβριος 2007

PROMET (ΙΠΦ-Δημόκριτος, ΙΗΔΛ-ΙΤΕ, ΤΕΙ)

Gold alloy (Au-Ag-Cu)

Early Bronze Age (3000 BC)

Εθνικό Μουσείο Δαμασκού, Οκτώβριος 2007

PROMET (ΙΠΦ-Δημόκριτος, ΙΗΔΛ-ΙΤΕ, ΤΕΙ)

Αρχαιολογικό Μουσείο, Αρχαία Κόρινθος (09/2010) Αναλύσεις φραγκικών νομισμάτων

Ιστορικό Μουσείο Κρήτης, Ηράκλειο, 07-2014

