

NMR Spectroscopy in Cultural Heritage materials analysis

Apostolos Spyros

NMR Laboratory

State of the art

- NMR spectroscopy seldom used for systematically for analysis in CH
- Limitation: quantity of sample
- Advantage: very powerful analytical capabilities for organic materials

Cultural heritage materials analysis

- Oil and tempera binders
- Varnishes, Resins
- Paintings/Wall paintings
- Contemporary materials
- Modern Art
- o Dyes
- o Waxes
- Parchments

Egg yolk in a 19th cent. Byzantine icon ¹H-¹³C 2D HMQC NMR

Beeswax identification in Pompei wall paintings

Identification of resins in aged varnishes Solid state HR-MAS NMR

Blue: Aged varnish spectrum Red: Aged linseed oil spectrum

Fresh copal spectrum

Contemporary Works of Art

Oulu City Art Museum, Finland

The last milk platform, Jan-Eric Andersson, 1992

The Cocotte with two dogs, Karry Tykkylainen, 1987

- 1. Paint samples from clock faces on Government Palace in Helsinki
- 2. Dyes and dyed wool fibres
- 3. Oil colours from the workshop of artist Remo Brindisi

The west façade of the Government Palace in Helsinki.

- Clock face VN1 \uparrow before restoration.
- Cross section of a sample from VN1. Notice the thick black layer.

Objectives:

- Characterization of binding medium.
- Assessment of the extent of degradation.
- Sample preparation:
 - Paint chip in 700 μ l of acetone- d_6
 - 40 minutes sonication

¹H NMR spectrum of VN2-8 in acetone- d_6 . Letters indicate peaks characteristic of the species in the oil binder.

Markers

B _f /B	Free to total carboxyl groups	$B_f/B (=B_f+B_e)$
Di/FA	Diacids to fatty acids	(3B-1)/8F
TG/FA	Triglycerides to fatty acids	9G/F
Iodine value IV	Degree of unsaturation	V/F
%FFA	Free fatty acids molar percentage	(2DG+4MG+6GL)/ 6(TG+DG+MG+GL)

+ glycerides analysis

Glycerides analysis (molar %)

Sample	TG	1,2-DG	1,3-DG	MG	GL
VN1-1 (black)	3,2	5,9	32,1	24,4	34,3
VN2-8 (black)	5,2	6,3	32,0	24,3	32,1
Fresh linseed oil	95,4	2,7	1,9	0	0
Linseed oil 5 years	30,9	19,6	20,9	28,7	-

TG=triglycerides 1,2-DG and 1,3-DG=diglycerides MG=monoglycerides GL= glycerol.

Diagram of TG/FA versus B_f/B .

Objective:

- → Characterization of the dyes in both pure dyes and dyed wool
- Develop rapid analytical tools able to distinguish them

• Sample preparation

- Dye extraction from wool (sonication method)
- Solubilization of pure dyes

Chemical shifts of pure dyes in aromatic region of ¹H NMR spectra.

Peak shifting for basic dyes

Peak shifting for acid dyes

Rhodamine B

Presence of a common lipidic matrix in all the extracts.

- Wool → lipid content about 2%
 - Free fatty acids
 - Sterols
 - Polar lipids

High amounts of a monounsaturated fatty acid were identified by NMR

Extract	% MU
Rhodamine B	49,8
Crystal Violet	36,8
Victoria Blue R	44,3
Naphthol Yellow S	28,6
Orange I	31,1
Indigo Carmine	33,7
Blank (undyed)	50,8

Marseille soap was used to treat the wool before dying

Marseille soap is made from olive oil

Sample		
MOB 370		
MOB 408		
MOB 410	Blue colours	
MOB 457]	
MOG 111		
MOG 112	Yellow colours	
MOG 435		
MOG 454		
MOV 286		
MOV 356		
MOV 429	Green colours	
MOV 433		

List of pigments and extenders used in the colours analysed

Each colour has a different composition. A mixture of pigments is used in order to obtain the desired colour.

Phthalocyanines

- PB15 Phthalocyanine α
- PB15:3 Phthalocyanine β
- PG7 Chlorinated phthalocyanines
- PB16 Metal free phthalocyanine

Other components

- Organic:
- PY1 Hansa Yellow 1
- PY3 Hansa Yellow 3
- PY17 Disazo Yellow
- PY83 Diarylide yellow
- PO43 Perinone orange
- Inorganic:
- PB29 Synthetic ultramarine
- PW4 ZnO (zinc oxide)
- PW6 TiO2 (titanium dioxide)

Objectives:

- Characterization of organic modern synthetic pigments.
- Evaluation of the state of conservation of the oil binder.

- Preparation of the samples
 - Paint in a vial
 - Acetone added (a)
 - Precipitation by centrifugation (b)
 - Acetone with binder removed (c)
 - Excess acetone dried from sample (d) \rightarrow SS-NMR

Solid state CP-MAS NMR analysis

- High amount of sample
- Information not significant enough

Glycerides analysis

	Sample			
	MOB457	MOG454	Fresh linseed oil	Linseed oil 5 yrs
TG	88,21	76,44	95,4	30,9
1,2-DG	3,26	6,14	2,7	19,6
1,3-DG	6,58	8,30	1,9	20,9
MG	0,58	3,97	0	28,7
GL	1,37	5,14	0	-

Aknowledgements

 Valeria Corradetti, Six months internship at the NMR laboratory – UoC, Greece.
MSc in Science for the conservation-restoration of cultural heritage, University of Bologna, September 2014.

Dr. E. Kartsonaki, UoC. S. Sfakianaki, M.Sc., UoC.

Prof. Silvia Prati, University of Bologna, Italy.

Dr. Ulla Knuutinen, University of Helsinki, Finland.

Prof. D. Anglos, UoC and IESL-FORTH, Heraklion Crete.

Prof. E. Caponetti, Dr. A. Spinella, University of Palermo, Italy.

Dr. E. Kouloumpi, National Gallery, Athens, Greece.

Thank you !!

Contemporary Works of Art

Oulu City Art Museum, Finland

The last milk platform, Jan-Eric Andersson, 1992

The Cocotte with two dogs, Karry Tykkylainen, 1987

UP resin degradation

- Works of art made by glass-reinforced UP resin
- Exhibited outside for several years -37 to 32 °C, 55-89 % RH,

Yellowing, cracks, air inclusions

Synthesis and curing of a UP resin to make a hard thermoset material

UPR analysis plan

- Prepare reference UPR resins according to artist's directions
- Age UPR under different environmental conditions (heat, humidity, UVB, etc)
- Measure mechanical properties
- Analyze reference and actual samples by NMR spectroscopy

Norpol 450-500 ¹H NMR spectra of acetone extracts

Organics in UPR resins

UPR aging: benzaldehyde (BZ) and benzoic acid (BA)

Chemometrics of UPR samples: PCA and cluster analysis

UPR reference resin C was used!

G. Stamatakis, U. Knuutinen, K. Laitinen, A. Spyros Anal. Bioanal. Chem. 398, 3203(2010)

From the chemist to the artist

- Exposure of works of art made from UP resins in the open air should be avoided.
- Use high quality UP resins containing UV stabilizers
- Care must be taken by the artist so that curing is completed and no residual solvents remain
- Use resistant top-coats to protect works of art