7. In Fig. 27-34, charged particles move in the vicinity of a
current-carrying wire, For each charged particle, the arrow
indicates the direction of motion of the particle, and
the + or — indicates the sign of the charge. For each of

the particles. indicate the Positive particle in the upper left: force is downward toward the wire. Negative particle in the upper

direction of the magnetic 1 right: force is to the left. Positive particle in the lower right: force is to the left. Negative particle in
:?erlcde d;i;?l::g "E'vg"‘::_:z (e - the lower left: force is upward toward the wire.
wire. ) I

FIGURE 27-34 '

Question 7. _— B

12. No, you cannot set a resting electron into motion with a static magnetic field. In order for a charged
particle to experience a magnetic force, it must already have a velocity with a component

12. Can you set a resting electron into motion with a steady perpendicular to the magnetic field: F = gvBsinf. If v=0, F = 0. Yes, you can set an electron into
magnetic field? With an electric field? Explain. . . . . . .
motion with an electric field. The electric force on a charged particle does not depend on velocity:
F =gE.

FIGURE 27-33 Bainbridge-type

#23. Two ions have the same mass, but one is singly ionized and mass 5pectmmeter_.The magnetic
the other is doubly ionized. How will their positions on the fields B and B’ point out of the
film of the mass spectrometer of Fig. 27-33 differ? paper (indicated by the dots), for

positive ions.
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8. (1) A long wire stretches along the x axis and carries a 3.0-A
current to the right (+x). The wire 18 in a uniform
magnetic field B = (0.20i — 0.36j + 0.25k) T. Determine
the components of the force on the wire per cm of length.

14. (I) An electron is projected vertically upward with a speed
of 1.70 % 10°m/s into a uniform magnetic field of 0480T
that 1s directed horizontally away from the observer.
Describe the electron’s path in this field.

16. (I) Find the direction of the force on a negative charge for
each diagram shown in Fig. 27-42, where ¥ (green) is the
velocity of the charge and B (blue) is the direction of the
magnetic field. () means the vector points inward. & means
it points outward, toward you.)
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(a) (b) (c) (d)
- B
(e) (f)

FIGURE 27-42
Problem 16.

8.  We find the force per unit length from Eq. 27-3. Note that while the length is not known, the
direction is given, and so £ = fi.
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2 _JixB=(3.0A)] 1 0 0 |=(-0.75j-1.08k)N/m
4 100cm
0.20T -036T 0.25T

=|—(7.5j+11k) %107 N/cm
( )x10°N/

14. The magnetic force will cause centripetal motion, and the electron will move in a clockwise circular

path if viewed in the direction of the magnetic field. The radius of the motion can be determined.

V2 mv  (9.11x107"kg)(1.70 x10° m/s) -
F =gvB=m— — r= = - ={2.02x10 " m
r gB (1.60x107°C)(0.480T)

16. Since the charge is negative, the answer is the OPPOSITE of the result given from the right hand rule

applied to the velocity and magnetic field.
(a) left

(b) left

(c) upward

(d) inward into the paper

(e) no force

(f) downward



19. (II) A doubly charged helium atom whose mass is
6.6 X 107 kg is accelerated by a voltage of 2700V,
(a) What will be its radius of curvature il it moves in a plane
perpendicular to a uniform 0.340-T field? (b) What is its
period of revolution?

(a) The velocity of the ion can be found using energy conservation. The electrical potential energy

of the ion becomes kinetic energy as it is accelerated. Then, since the ion is moving

perpendicular to the magnetic field, the magnetic force will be a maximum. That force will
cause the ion to move in a circular path.

1 2 qu
E . =E., — gV=-mv — v=, [—
m

vV
F_=quB=m— —
=

2gV
mv "\ gy 1 [2mV 1 2(6.6x107"kg)(2700V) -
.. 2 " = ~3.1x10%m
B g8 B\ ¢  0340T 2(1.60x107°C)

(b) The period can be found from the speed and the radius. Use the expressions for the radius and
the speed from above.

1 [2mV
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2xr 2xr BY ¢ 2zm 27 (6-6’< 107 kg) 3.8x10"
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/i v 2qV g8 2(1.60x107°C)(0.340T)
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27. (II) A particle of charge ¢ moves in a circular path of
radius r in a uniform magnetic field B. If the magnitude
of the magnetic field is doubled, and the kinetic encrgy of
the particle remains constant, what happens to the angular
momentum of the particle?

38. (II) Show that the magnetic dipole moment p. of an electron

orbiting the proton nucleus of a hydrogen atom is related to
the orbital momentum L of the electron by

£
= —UL.
- 2m

27. The kinetic energy of the particle can be used to find its velocity. The magnetic force produces

38.

centripetal acceleration, and from this the radius can be determined. Inserting the radius and velocity

into the equation for angular momentum gives the angular momentum in terms of the kinetic energy
and magnetic field.
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From the equation for the angular momentum, we see that doubling the magnetic field while keeping
the kinetic energy constant will cut the angular momentum in half.
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The magnetic dipole moment is defined in Eq. 27-10 as g = NI4. The number of turns, N, is 1.
The current is the charge per unit time passing a given point, which on the average is the charge on
the electron divided by the period of the circular motion, [ = e/ T'. If we assume the electron is
moving in a circular orbit of radius r, then the area is ar”. The period of the motion is the
circumference of the orbit divided by the speed, T = Zfrr/v . Finally, the angular momentum of an

object moving in a circle is given by L = mrv. Combine these relationships to find the magnetic
moment.
€ € , emr’v erv emrv e e
H=Nld=—nar = ar = = = =—mrv=—-0L
r Errrf v 2ar 2 2m  2m 2m




66. The cyclotron (Fig. 27-50) is a device used to accelerate

clementary particles such as protons to high speeds. Parti-
cles starting at point A with some initial velocity travel in
circular orbits in the magnetic field B. The particles are
accelerated to higher speeds each time they pass in the
gap between the metal “dees,” where there is an electric
field E. (There is no electric fiecld within the hollow metal
dees.) The electric field changes direction each half-cycle,
due to an ac voltage V = Vjsin 27 f1, so that the particles
are increased in speed at each passage through the gap.
(a) Show that the frequency f of the voltage must be
f = Bq/2wm, where q is the charge on the particles and m
their mass. (b) Show that the kinetic energy of the particles
increases by 2gV}, each revolution, assuming that the gap is
small. (¢) If the radius of the cyclotron is 0.50m and
the magnetic field
strength is 0.60T,
what will be the
maximum  kinetic
energy of acceler-
ated protons in
MeV?

Gap
FIGURE 27-50
A cyclotron.
Prahlam AA

66. (a) The frequency of the voltage must match the frequency of circular motion of the particles, so

(b)

that the electric field is synchronized with the circular motion. The radius of each circular orbit

. . my . c . C o
1s given in Example 27-7 as r =—. For an object moving in circular motion, the period is

gB
. r . : .
given by T =—— and the frequency is the reciprocal of the period.
v
2rr v v B
T=— — f = = = kl
v 2ar mv. | 2xm
2r
qB

In particular we note that this frequency is independent of the radius, and so the same frequency
can be used throughout the acceleration.

For a small gap, the electric field across the gap will be approximately constant and uniform as
the particles cross the gap. If the motion and the voltage are synchronized so that the maximum
voltage occurs when the particles are at the gap, the particles receive an energy increase of

K =gV, as they pass each gap. The energy gain from one revolution will include the passing

of 2 gaps, so the total kinetic energy increase is |2gV|.

(c) The maximum kinetic energy will occur at the outside of the cyclotron.
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5 leV I MeV
=6.808x10 "] =[4.3MeV

1.60x107°7 )L 10°eV



67. Magnetic fields are very useful in particle accelerators for
“beam steering™: that is, magnetic fields can be used to
change the beam’s direction without altering its speed
(Fig. 27-51). Show how this could work with a beam of
protons. What happens to protons that are not moving with
the speed that the magnetic field is designed for? If the field
extends over a region 5.0 cm wide and has a magnitude of
0.38 T, by approximately
what angle will a

Magnet
beam of protons -
traveling at
0.85 X 10" m/s —— ¢ O
be bent? |
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Evacuated tubes, inside
of which the protons move
FIGURE 27-51 with velocity indicated by
Problem 67. the green armows

67. The protons will follow a circular path as they move through the
region of magnetic field, with a radius of curvature given in Example

27-Tas r= i; Fast-moving protons will have a radius of curvature
q

that is too large and so they will exit above the second tube.

Likewise, slow-moving protons will have a radius of curvature that is

too small and so |thn.:3-r will exit below the second tul::a|. Since the exit

velocity is perpendicular to the radius line from the center of

curvature, the bending angle can be calculated.

sinff=— —

Lt g8 ., (50x107m)(1.60x107°C)(0.38T)
n n . -
r my (1.67 %107 kg)(0.85x10" m/s)
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—sin " 0.214=12°




72. Zeeman effect. In the Bohr model of the hydrogen atom.
the electron is held in its circular orbit of radius r about its
proton nucleus by electrostatic attraction. If the atoms are
placed in a weak magnetic field B, the rotation frequency of
electrons rotating in a plane perpendicular to B is changed
by an amount

el
dmm

Af =

where ¢ and m are the charge and mass of an electron.
(@) Derive this result, assuming the force due to B is much
less than that due to electrostatic attraction of the nucleus.

(b) What does the + sign indicate? (@) As the electron orbits the nucleus in the absence of the magnetic field, its

centripetal acceleration is caused solely by the electrical attraction between
the electron and the nucleus. Writing the velocity of the electron as the
circumference of its orbit times its frequency, enables us to obtain an
equation for the frequency of the electron’s orbit.

ke’ v (szf'fn) ke’

—_— = M—=— fu =

= r » 4;-3 mr X ¥ X W
When the magnetic field is added, the magnetic force adds or subtracts from the centripetal
acceleration (depending on the direction of the field) resulting in the change in frequency.

BT L 2B pi=o

k—{i_i g(27rf)B=m
re
We can solve for the frequency shift by setting f = f, + Af , and only keeping the lowest order
terms, since Af < f.

(ﬁj"'ﬂf) +—(fu+-‘jbf] fulzﬂ
W+ 21,0+ DR T 95 (3 zm\{ K=0 o |ar=+1E

dm

(b) The “+” indicates whether the magnetic force adds to or subtracts from the centripetal
acceleration. If the magnetic force adds to the centripetal acceleration, the frequency increases.
If the magnetic force is opposite in direction to the acceleration, the frequency decreases.



