3. (II) The momentum of a particle, in SI units, is given by p =
48171 — 8.0 — 8.9 rk. What is the force as a function of time?

4. (II) The force on a particle of mass m is given by F = 26i — 12 1%
where £ is in N and ! in 5. What will be the change in the
particle’s momentum between ¢ = 1.0s and ¢ = 20587

& (III) Air in a 120-km/h wind strikes head-on the face of a
building 45 m wide by 65 m high and is brought to rest. If air
has a mass of 1.3 kg per cubic meter, determine the average
force of the wind on the building.

3. The force is the derivative of the momentum with respect to time.

g5 d(4.8°1-8.0]-8.9k
dt dt

(9.5:5—8.9|E}N

4. The change in momentum is the integral of the force, since the force is the derivative of the

momentum.
- d]_j - I, ~ t=20s . - . 1205 . =
F="" = b= :‘TFdr . ,;LS(MI_IM j)dr=(26d-47) " " =|(261 - 28] ) kgem/s

]mfs
3.6km/h

volume of air measuring 45 m x 65 m x 33.33 m will have been brought to rest. By Newton’s third
law, the average force on the building will be equal in magnitude to the force causing the change in
momentum of the air. The mass of the stopped air is its volume times its density.

_Ap _mAv_VpAv  (45m)(65m)(33.33m)(1.3kg/m")(33.33m/s-0)
A At A Is

The air is moving with an initial speed of 120 k_m/h( ] =33.33 m/s. Thus. 1in one second, a

=[4.2x10°N

F




13. (II) A child in a boat throws a 5.70-kg package out horizontally
with a speed of 10.0 m/s, Fig. 9-37. Calculate the velocity of
the boat immediately after, assuming it was initially at rest.

14.

=1
th

15.

The mass of
the child is
240kg and
that of the
boat is 35.0 kg.

FIGURE 9-37
Problem 13.

v=10.0 m/s

‘—»

(11) An atomic nucleus initially moving at 420 m/s emits an

alpha particle in the direction of its wvelocity, and the
remaining nucleus slows to 350 m/s. If the alpha particle has
a mass of 4.0u and the original nucleus has a mass of 222 u,
what speed does the alpha particle have when it is emitted?

(I} An object at rest is suddenly broken apart into two {rag-

ments by an explosion. One fragment acquires twice the
kinetic energy of the other. What is the ratio of their masses?

F L F
Piiial = P — O0=m, v, +mpy, — vy=-

— 1 .
K,=2K, — -m,v,

* = 2(%m3v§) =mH[—

m,

m

I’ -
MpVa
B

14.

m,

m

-

v

r

A

EI The throwing of the package i1s a momentum-conserving action, if the water resistance is ignored.

Let A represent the boat and child together, and let B represent the package. Choose the direction
that the package is thrown as the positive direction. Apply conservation of momentum, with the
initial velocity of both objects being 0.

Puiia = Pra = (my+my)v=my, +myy —

y __myvy  (5.70kg)(10.0m/s) ~0966m/s

oom (24.0kg +35.0kg)

The boat and child move in the opposite direction as the thrown package, as indicated by the
negative velocity.

A

Consider the motion in one dimension, with the positive direction being the direction of motion of
the original nucleus. Let A represent the alpha particle, with a mass of 4 u, and let B represent the
new nucleus, with a mass of 218 u. Momentum conservation gives the following.

F F
Piiial = Phoal — (m.-\ + mBJ v=myv, +tmyv, —

. (my +my)v—myvy (222u)(420m/s)—(218u)(350m/s) _ 1200m/s
m, 4.0u
Note that the masses do not have to be converted to kg, since all masses are in the same units, and a

ratio of masses i1s what is significant.

Momentum will be conserved in one dimension in the explosion. Let A represent the fragment with
the larger kinetic energy.

The fragment with the larger kinetic energy has half the mass of the other fragment.



21, (1) A 224-kg projectile, fired with a speed of 116 m/s at a
60.0% angle, breaks into three pieces of equal mass at the
highest point of its arc (where its velocity is horizontal). Two
of the fragments move with the same speed right after
the explosion as the entire projectile had just before the
explosion: one ol these moves vertically downward and the
other horizontally. Determine {a) the velocity of the third
fragment immediately after the explosion and (b)) the
energy released in the explosion,

21. (a)

(b)

For the initial projectile motion, the horizontal velocity is constant. The velocity at the highest
point, immediately before the explosion, is exactly that horizontal velocity, v_ =1, cosf. The

explosion is an internal force, and so the momentum is conserved during the explosion. Let ¥,

represent the velocity of the third fragment.

ﬁbcfnn: = ]_jnﬁu:cr — mpﬂ cos Hi = %mvu CDSHi + %mvu cOs H (_-I) + _:Iqmi'-r3 —

-~
=

v, =2y cos o + Vy cosﬂi =2 (1 lﬁm/s.) cos 60.0°1 + (1 lﬁm/S) cos 60.07]

=1(1 llSm/s)i + (58.[}111/5)}
This is 130 ms at an angle of 26.6° above the horizontal.

— K, ... Notethat vi = (Evn cOS E’:ll + (vﬂ GUSH)E

The energy released in the explosion is K

after

¥ ]
= 519{; cos” .

Kope Koo =[ 2(5m) (v, c080)" + £ (m) (v, 050)° + £ ()12 |~ £ (v, cos6)

-

= jlm{[ll v, cos’ @ +1v cos’ @+ (Sus cos’ ﬁ)] —v; cos’ !‘3'}

13mv, cos” @ =21(224kg)(1 115m/s.)|2 cos” 60.0°={5.02x10"J

3




26. (IT) A 130-kg astronaut (including space suit) acquires a
speed of 2.50 m/s by pushing off with his legs from a 1700-kg
space capsule. (@) What is the change in speed of the space
capsule? (b) If the push lasts 0.500s, what is the average
force exerted by each on the other? As the reference frame,
use the position of the capsule before the push. (c) What is
the kinetic energy of each aflter the push?

26. (a) The momentum of the astronaut—space capsule combination will be conserved since the only
forces are “internal™ to that system. Let A represent the astronaut and B represent the space
capsule, and let the direction the astronaut moves be the positive direction. Due to the choice of

#,
reference frame, v, =v, =0. We also have v, = 2.50 m/s.

, -,
Piita = Proat — MV tmpy, =0=m,v, +myy, —

, , m 130 k
v, =V, 24 = (2.50m/s)———2 = —0.1912ms =[~0.19 m/s
mg 1700 kg
The negative sign indicates that the space capsule is moving in the opposite direction to the

astronaut.
(b) The average force on the astronaut is the astronaut’s change in momentum, divided by the time
of interaction.

Ap m(v:; - vA} (ISG kg)(Z.SDmfs— G) B

e == = =[6.5x10°N
LY At 0.500 s
(€©) K. =+(130kg)(2.50m/s)" =|4.0x10"J
K.\ =+(1700kg)(-0.1912m/s)" =|31J




31, (1) {a) A molecule of mass m and speed v strikes a wall at

right angles and rebounds back with the same speed. If the
collision time is Af, what is the average force on the wall
during the collision? (b) II' molecules, all of this type, strike
the wall at intervals a time ¢ apart {on the average) what is

(a) Since the velocity changes direction, the momentum changes. Take the final velocity to be in
the positive direction. Then the initial velocity is in the negative direction. The average force is
the change in momentum divided by the time.

the average force on the wall averaged over a long time?

37, (I1) A ball of mass 0.220 kg that is moving with a speed

of 7.5 m/s collides head-on and elastically with another ball
initially at rest. Immediately after the collision, the incoming
ball bounces backward with a speed of 3.8 m/s. Calculate
(@) the velocity of the target ball after the collision, and
(B) the mass of the target ball.

. (1T} A ball of mass m makes a head-on elastic collision with a

second ball (at rest) and rebounds with a speed equal to 0.350
its original speed. What is the mass of the second ball?

_Ap (mv——mv) | my

avg

- M At At

(b) Now, instead of the actual time of interaction, use the time between collisions in order to get the
average force over a long time.

B Ap _ (mv——mv) |, mv

avg

; [ t I

Let A represent the moving ball, and let B represent the ball initially at rest. The initial direction of
the ball is the positive direction. We have v, =7.5 m/s, v, = 0, and v; =-38 m/s.

(a) Use Eq. 9-8 to obtain a relationship between the velocities.

ve—va=—(vi-vy) — vi=v,—v,+v,=75m/s-0-3.8m/s= 3.7m/s

() Use momentum conservation to solve for the mass of the target ball.
m.\v, +vaB =m,\v, +mEvB —

o 0T = (0.220 kg) (75mys=38mfs) _rorie
(v —vy) 3.7m/s

38. Use the relationships developed in Example 9-8 for this scenario.

’ m.-a. B mB

V=V, —

m, +m,

—v v, —(—0.350)v 1.350
m, = v:‘—v"‘ m, == ( Vs mhz(—]mi— 2.08m
ViV, (—0.350)v, +v, 0.650




di. (II) Show that, in general, for any head-on one-dimensional

elastic collision, the speeds after collision are
2m (mg — my
N N N N
I L ol T My + Mp
and

al
v A

(mﬁ - mg

. ZmB i
—_— + Up —J
LYY Mg

where v, and vy are the initial speeds of the two objects of

mass 1, and mg.

40.

Both momentum and kinetic energy are conserved in this one-dimensional collision. We start with
Eq. 9-3 (for a one-dimensional setting) and Eq. 9-8.
, . # , , F
mv, +mpyv,=m\yv, +myv, ; v, —v, = —(vA - VB]' — V=V, v+,
Insert the last result above back into the momentum conservation equation.
# , #
m,v, +mgvy =m,v, +my (P.a. VgtV ) = (m.a. + mB)vA +my (PA - 1"5) —?

¥

mhvﬁ.+vaE_mB(v.&_uB)z(mA-'-mH)FA — (mh—mﬂ)v_,‘+2m3vﬂ= m.ﬁ+mE)vﬁ —

Ir _ mﬁ_mﬂ zmH
Lﬂ_v.ﬁ. - +PB -
mﬁ+mﬂ mA+mB

Do a similar derivation by solving Eq. 9-8 for v, which gives v =v, —v, +v,.
¥ r s,
myv, +mgvg =m, (v, =v, +vy)+mgvg=m, (=v, vy )+ (m, +mg)vy —

mhvﬁ+mﬂva—mh(—vh+va):(mﬁ+m3]v; — Emhvh+(m3—mﬁ)v3:(mﬁ+m3)v; —

zm.‘i
vp=v, | —— |+,

.r:-~t),l+ﬁ'wB mh+mB

My —m,




45. (II) An internal explosion breaks an object, initially at rest, (a) In Example 9-11, K, = %mv1 and K, = L(m+ M}v'l. The speeds are related by
into two pieces, one of which has 1.5 times the mass ol the m
other. If 75007 is released in the explosion, how much Vv = V.
kinetic energy does each piece acquire? m+M

K K. +mv my
mv s
- mv
m+ M — m 1= —-M
my’ m+ M m+ M

-M -380
(b) For the given values, = E_ . Thus 96% of the energy is lost.

m+M  39g
49. (I1) A measure of inelasticity in a head-on collision of two | (a) For a perfectly elastic collision, Eq. 9-8 says v, —v, =—(v,—v, ). Substitute that into the
objects is the coefficient of resttution, e, defined as i coefficient of restitution definition
vy — Vg Vv, =V, v, =V
e = —— e = -2 E:_(.-I 3):]_
g — U v, =V, V=V,
where vy — v is the relative velocity of the two objects after For a completely inelastic collision, v/, = v,. Substitute that into the coefficient of restitution
the collision and vy — v, is their relative velocity before it. definition
(a) Show that e =1 for a perfectly elastic collision, and PR
¢ =10 for a completely inelastic collision. (b) A simple e=21"Ve _g
method for measuring the coefficient of restitution for an v, =V,
object colliding with a very hard surface like steel is to drop i (b) Let A represent the falling object and B represent the heavy steel plate. The speeds of the steel
the object onto a heavy steel plate, as shown in Fig. 9-41. _ ' e . . .
: plate are v, =0 and v, =0. Thus e=—v, fv_J . Consider energy conservation during the

Determine a formula for e in
terms of the original height h O falling or rising path. The potential energy of body A at height A is transformed into kinetic

energy just before it collides with the plate. Choose down to be the positive direction.

and the maximum height /' |
reached after collision. | ! ‘ mgh =%m,,-i — v, =+f2gh
i i i h i The kinetic energy of body A immediately after the collision is transformed into potential
| energy as it rises. Also, since it is moving upwards, it has a negative velocity.
FIGURE 9-41 Problem 49. - l t*’ ‘ P, N e
Measurement of coefficient AY BV \ mgh'=mv, — v, =—2gh

of restitution, . 1 Substitute the expressions for the velocities into the definition of the coefficient of restitution.

e=—v:fv_4=—_—'2gh — |le= h’j’h

2gh




. (11} A pendulum consists of a mass M hanging at the bottom

end of a massless rod of length £,
which has a frictionless pivot at its - -

top end. A mass m, moving as shown ~

in Fig, 9-42 with velocity v, impacts A
M and becomes embedded. What is \
the smallest value of ¢ sufficient 3
to cause the pendulum (with & |
embedded mass m) to swing T

m

clear over the top of its arc?
£
FIGURE 9-42 _—o A J

Problem 50,

S6. (11) Two hilliard balls ol equal mass move al right angles and

meet at the origin of an xv coordinate system. Initially ball A
is moving upward along the v axis at 2.0 m/s, and ball B is
moving to the right along the x axis with speed 3.7 m/s, After
the collision (assumed eclastic),

i, _. +y
the second ball is moving along -
the positive y axis (Fig. 9-43).

What is the final direction t“B

of ball A, and what are B}
the speeds of the two
balls? = .
'\Ex . +x
rg=3.7 mfs
vy = 2.0 m/s
A

FIGURE 9-43 Probhlem 56.
(Ball A after the collision is not shown.)

56.

50. The swinging motion will conserve mechanical energy. Take the zero level for gravitational

potential energy to be at the bottom of the arc. For the pendulum to swing exactly to the top of the
arc, the potential energy at the top of the arc must be equal to the kinetic energy at the bottom.

Kiwomn =Uy — s(m+M)V.  =(m+M)g(2L) — V.. =2+/gL
Momentum will be conserved in the totally inelastic collision at the bottom of the arc. We assume
that the pendulum does not move during the collision process.
m+ M
2 «f gl

m+ M
m m

Piitisl = Phipa — MV = (m+M}me1um — Vv

Write momentum conservation in the x and y directions, and kinetic energy conservation. Note that
—
both masses are the same. We allow v, to have both x and y components.
L *,
P, mvg=mv, — Vgp=V,
, 4 W, *
p,: mv,=mv, +tmvy — v, =v, +v

2

K: Ltmv+imv, =Ltmv7 +1mv] — vi4v, =v0+v)
Substitute the results from the momentum equations into the kinetic energy equation.

2 .

- eyl PR . .1 . 2o .2 .2 2
(‘V'A}_ + 1’3) + (UM} =v, v, > vty vt v =y o
r2 L 2 2 r2 2 F ' r
v, +2vh_‘_b3 v, =v, vy — 21_,‘_‘.1’3 =0 — Vi = Dorv,=0

Since we are given that v; # 0, we must have v:n_ = 0. This means that the final direction of A is

the [x direction. Put this result into the momentum equations to find the final speeds.

, L

v, =V, =V, = 3.Tm/s vV, =V, = 2.ﬂm/5

B A




59. (I} A neon atom {m = 20.0u) makes a perfectly elastic
collision with another atom at rest. After the impact, the
neon atom travels away at a 55.6° angle from its original
direction and the unknown atom travels away at a
—50.07 angle. What is the mass (in u) of the unknown atom?
[Hinr: You could use the law of sines.]
59. Let A represent the incoming neon atom, and B represent the target

atom. A momentum diagram of the collision looks like the first figure.

L]
i
i
The figure can be re-drawn as a triangle, the second figure, since V.
]
- — —F . , . . -
m,v, =m,V, + m,V,. Write the law of sines for this triangle, relating @@’ E
each final momentum magnitude to the initial momentum magnitude. : %SD_{F
. . . ! v
v
m,v sin @ sin @
SO S
m,v, sine sin &
, - .
myv, siné , m, sinf
= = Vg =V
m,v, sina m, sina

The collision is elastic, so write the kinetic energy conservation equation,
and substitute the results from above. Also note that & = 180.0—55.6" — 50.0° = 74.4".

] 3 2 ” s sing | m, sinf i
My, =smyV, +ompvy — o my, =m, (v, — g v, . —
sin ¢ m, sin o
m, sin” @ (20.0 u)sin” 55.6°
my = = =399 u

sin> @—sin’ @  sin’ 74.4 —sin’ 50.0°



63. (1) The distance between a carbon atom (s = 12 u) and an
oxygen atom (m = l6u) in the CO molecule is
1.13 x 107" m. How far from the carbon atom is the center
of mass of the molecule?

63. Choose the carbon atom as the origin of coordinates.

12u)(0)+(16 u)(1.13x10™"
Xem = Mete Moo = { U)( ) ( u)( m) =16.5%10"'m| from the C atom.
' m.+mg 12Zu+16u

1
72. From Eq. 9-15, we see that v, = —Zmr.i"f..

72. (1) Mass My = 35kg and mass Mg = 25kg. They have - (35kg) (lzl—lﬁj)m/ﬁ 251(5}( 2'}1+14.l)m/5
velocities (in m/s) ¥, = 12i — 16j and ¥g = —20i + 14j. Vem =
Determine the velocity of the center of mass of the system. {351{5 +235 kg)
[(35)(12) = (25)(20) |ikgem/s +[(35) (~12) + (25)(24)] jkgem/s
B (60kg)

85. A novice pool player is faced with the corner pocket shot
shown in Fig. 9-48. Relative dimensions are also shown, Should
the player worry that this
might be a “scratch shot.” in
which the cue ball will also
fall into a pockel? Give
details. Assume equal mass
balls and an elastic collision. 0

| 4.0 '

FIGURE 9-48
O Cue ball
Problem 85, Sl

@ It is proven in the solution to problem 61 that in an elastic collision

_ —80ikgem/s—210jkgem/s _ ~1.3im/s-3.5jm/s

(60kg)

between two objects of equal mass, with the target object initially
stationary, the angle between the final velocities of the objects is 90°.
For this specific circumstance, see the diagram. We assume that the

target ball is hit “correctly” so that it goes in the pocket. Find &, from

1.0
the geometry of the “left” triangle: # = tan' \/_ =30°. Find 6, from
3.0 i CB

3.0
the geometry of the “right” triangle: &, = tan™ f = 60°. Since the balls will separate at a 90°
) 3.0

angle, if the target ball goes in the pocket, this does appear to be a |good possibility of a scratch shot|.




99, Two balls. of masses my = 45g and mp = 65g, are

et s shomm sy The Tehter ball fo mulled 99. (a) Conservation of mechanical energy can be used to find the velocity
suspenced as stown I Tg. 7=z Lhe Hghier ball Is putie of the lighter ball before impact. The potential energy of the ball at
away to a 66° angle with the vertical and released. . . A .
(a) What is the velocity of the lighter ball before impact? the hlg].lest point is equal to the kmretu? energy fflfthe ball just fcosd
(b) What is the velocity before impact. Take the lowest point in the swing as the zero
of each ball after the location for gravitational potential energy.
elastic collision? (¢) What ~ & _ 1 2
will be the maximum N Eiiia = Ega — mﬁ.gf(l —cosf) =im,v, —
height of each ball 66" ~ ;
after the eclastic (A ) Vv, =Jigf(l—c039) =J2{9.8{Im/s ](G.Sﬂm](l—casﬁﬁrc‘)
collision? Mad, Ahco
Ve =1.868m/s =|1.9m/s
‘-"-.-"‘—.-_ [ ! : 1 - " L v " - . - - - -
FIGURE 9-52 AP (b) This is an elastic collision with a stationary target. Accordingly, the relationships developed in
Problem 99, My My

Example 9-8 are applicable.

)
Vom v, [ MM | () gegmys)| 2242Kke0.065ke | 4 330675 = [[0.34m/s
' m, +m, L 0.045kg + 0.065kg

([ 2(0.045kg)
| 0.045kg +0.065kg

v, =vﬁ[2i]=(l.868m/5)

m, +mg

]=1.528m,/s =|1.5m/s

(¢) We can again use conservation of energy for each ball after the collision. The kinetic energy of
each ball immediately after the collision will become gravitational potential energy as each ball
rises.

-

- Imv’ =mgh — k=i
: 22
> (-0.3396m/s)’ 2 (1.528m/s)’
= S) _[soxio”m] ; = 2x - USB0S) e
Y 2g 2(9.80m/s%) 2¢  2(9.80m/s’)

E E

initial — 4 final




107. In a physics lab, a cube slides down a [rictionless incline as
shown in Fig. 9-57 and
clastically strikes another :
cube at the bottom that is f t:_ﬁ-'fw
only one-half its mass. If 35 cm
the incline is 35c¢cm high T
and the table is 95 cm off _L
the floor, where does cach |
cube land? [Hint: Both
leave the incline moving
horizontally. ]

95 cm

FIGURE 9-57 —l—
Problem 107.

107. Let A represent the cube of mass M and B represent the cube of mass m. Find the speed of A

immediately before the collision, v, , by using energy conservation.

v, =+[2gh = \/E(Q.Sm/‘sl )(0.35 m) =2.619m/s

Use Eq. 9-8 for elastic collisions to obtain a relationship between the velocities in the collision. We
have v, =0 and M =2m.

Mgh=1Mv, —

Vv

A" V8 T

s ==(Va—15) = v

Substitute this relationship into the momentum conservation equation for the collision.

s # -, ,
m,v, + MgV =MV, + MmgVy — m,v, =m.v, + Mg (PA + V.&] -

v ek _ \[z[g.gmn/sl)(n.z.s m)  0873ms

zmvﬁ=2mu;+m(va+v;) - v, ? 3 3

=%y, =3.492m/s

Each mass is moving horizontally initially atter the collision, and so each has a vertical velocity of 0
as they start to fall. Use constant acceleration Eq. 2-12b with down as positive and the table top as
the vertical origin to find the time of fall.

b= Ve L gt — Lot —
y=y,tvt+ia® > H=0+0+1gt’ — 1=.[2H/g

, 4
Ve = Va + Va

Each cube then travels a horizontal distance found by Ax =v Af.

Ax = V:ﬁf = _‘igfr E = %w/hH = %J(D.Z’ni m](ﬁ.‘?S m) =0.3844m =|0.38m
g
Ax, = ’ A 4 Eg ZH x,‘ \/ﬂ35m ﬂgﬁm)—1538m~ 1.5m

g



1. [To pépio Tou pgAuoBpwpioy (CHaBr) Bieysipetal pe aktivoBolia Ailzp evipysiag 5,45 V. To . . , i i
uépIo oTIAEl kol Trapdyel peBulikd, piZa (CH3) ko atopké Bpopio (°Br).  H sowtepikd 1. Amoé v Kivnmkn evépyeia Tou Br Bpiokoupe Tnv Ea v evépyelag diaBéaiun ota
evépyeia Tou CHz givan 0,62 eV, kan n omoudn Tow Br 8, 51x10¢ m/s QWIO-BpauopaTa

(a) Bpeite Tnv evépyeia Tou Seapold Do tou CH2Br. ¢ P Hara»

(B) Eav n &diedbuvon tng tayxitntag tou Br ghvon 157 +5}—£ Bpeite v diedBuvon g

TayuTnTag g pefuikne pilag (GwoTe To avTioTogo Sidvugpa).
(v} Edv smovohoppavapz 1o Teipaopa pe 1o odtoro 41 Tou Bpuwpiou, Toon Ba givar n KE(Br)= m(CH 3) E :l m(Br]vJ (Br)

omoudn Tou ¥'Br edv n pdvn Siagopd sivar n pala. m(CH.Br) ° 2
Aidovrar 1eV=16x10"° J, 1amu=166x10"kg, m(C)=12 amu, m(H)=1 amu, m{™Br)=79 kg 27 1,42
amu, m{*'Br)=81 amu o m(CHSBr]m(Br]vJ (Br) ~ Odamu x T9amu x Lﬁﬁamu %1077 (8,51x10°m/3)

? 2m(CH.) 2 x15amu
o 2.97x107%J
=297x10 =2

L6x1075 T/ eV
=186eV

Edav Ent(CH3) givan n seowrepikn evépyeiag tou CH3 kai E(laser) n evipyeia Tou AEICep

TOTE EXOUUE
Ea= E(laser)— D, — E;,;(CH3)=

D, = E(laser)— Ea— E;(CH3)
=5.45-1386 —0.62
=2.97eV

(B) — 15 — 6}+I§: agol TpETel va £youps dampnaon g opprig To CHz Ba kivn8ei avtiBera ams 1o

Br.
() Egdoov To pévo n pafa arrade sival n pada éxoups =4.75x107°J

m(CH.) E =%m(_93r]v1 ("Br)

M(CH,”Br) °

CH. 1 ,
—m( o ) E = —m(E‘lBr)v‘ (E‘lBr)
M(CH."Br) ° 2

; Bl T 277 T 1. T _ . )

M(CH, _ﬁBr) _ m(alBrﬁ : (EIB}‘] = v('Br) = m[alBr]_‘rf (CH, ElBr)v (*Br)= 17994 % 8.51x10%m/ s

M(CH,"Br) m( Bryv (" Br) m(" Br)M(CH," Br) 81x95
v(*Br)=836x10"m/s




Bpeite To kévtpo TnNe palag. Mpotewopevn pebBobdoc: Bpeite mpwta To KEVIPO TG palac
yia ta 3 ubpoyova KMy, Ztn ouvéyxswa Ppeite To kévtpo tng palac yua tou {euyoug C-KMy,
ac o ovopdooups KMey, kol cuveaxsla to kevipo paloc petafl | kol KMey, omou sival kal
TO KEVTpOo palac Tou popilou. Ito oynua, n amootacn 32,6 pm sival n andotacn tow C
amno 1o eminedo mou opifouv Ta 3 H. (2 pts)

To poplo aktwoPolsital pe dwe evepyslac 5 eV kal onasl os | kal CHs. Edv n evépyela
Tou Geopou eivar 2,42 eV kal n ECWTEPLKN EVEPYELA Tow ipoiovtog CHs 0,75 eV, Ppeite tnv

omouén (Letpo tne taxvtntac) tou | ko tou CHs. Asifte os oxnua n nepwypate tic Stevbovoelc kal TNV Gopd Twv THXUTHTWY.

(4 pts)

Atdovtar 1eV=1,6x10-19 J=96,5 ki/mol, 1 amu=1,66x10-27kg, m(H)=1 amu, m(C)=12 amu. m(l)=127 amu.

R{I-C)=213,6 pm
@
R
\%‘ /V v
N ¢
%\(f/ / i32 6 pm

Kevtpo tnc uadlac: To H Bpiokovtal oto idto eninebdo, kot dnutoupyouv 1oomAeupo tpiywvo. To KEvTpo tnc ualoc touc
Bploketal 0TO KEVTPO TOU TPLywvou, dnA. navw oto dtevduvon mou dnutoupyouv ta atoua C-1. Emougvwc to Lopto

UTTOPEL VO AVTUTPOOWITEVTEL UE TOV YPOULULKO LUOPLO

Eav Gewpnoouue tnhv apxn twv aéovwv navw oto 3H T0Te 10 KEVTPO TN¢ palac Bpioketal
oTo onueio X TOTE EYOUUE

X(m, + 3my+m;) = (32,6pm)m, +(0)3 my + (213,6pm + 32,6pm)m,

_32,6-12+246.2-127
B 12+ 3+ 127

pm = 222,9 pm

CM-3H=X

X C-1=213,6 pm

C-3H=32,6 pm

3H



H dtad€owun evépyeia ota atoutka/uoploka Jpoovouata ival

Eq¢ = Eigser — Eseopov — Ecowrepue =5 — 242 —0,75eV =183 eV

CH3 p = _—"_1.83eV = 0,193V KE(CH3) = Eq =155 183eV = 1,64eV
McH3]1 142 McHsl

(oL [PKE _ 2:0193em _ o om 107%m _ o
v 1,02 m 1,02 s 10-6s m/s

(CHy) = — |ZKE _ 2 Lotem o458 <™ — 0,458 07m _ 458102
VAR T 102 Tm T 1,02 ,us_ 1065 _ ro810%m/s

KE(I) =




