*28. Name the type of equilibrium for each position of the balls

in Fig. 8-30.
28. A is a point of unstable equilibrium, B is a point of stable equilibrium, and C is a point of neutral

equilibrium.

“ * )

C

FIGURE 8-30
Question 28.

3. (II) A spring with k& = 63 N/m hangs vertically next to a
ruler. The end of the spring is next to the 15-cm mark on the
ruler. If a 2.5-kg mass is now attached to the end of the spring,
where will the end of the spring line up with the ruler marks?

3.  The spring will stretch enough to hold up the mass. The force exerted by the spring will be equal to
the weight of the mass.
mg (2.5 kg)(9.80m/s’)
k 63N/m

=0.39m

mg=k(Ax) — Ax=

Thus the ruler reading will be |39cm + 15¢cm = 54cm|.




7. (II) A particular spring obeys the force law F = (a) This force is conservative, because the work done by the force on an object moving from an

(—kx + ax® + bx*)i. (a) Is this force conservative? initial position (x,) to a final position (x, ) depends only on the endpoints.
Explain why or why not. (b) If it is conservative, determine . . .
the form of the potential energy function. W= .[F'di _ _[F_rdv‘f _ j(—kx rax’ + bx“l)dx _ {——ékxl +Laxt +g'b.r5):_:

X
= (-1hkx] +Lax; +%bx§) - (—jT,r.:xf +Lax} + Tibxf)

The expression for the work only depends on the endpoints.

JdU
(b) Since the force is conservative, there is a potential energy function U such that F =- _E!' .
X
3 4 U 1 2 1 4 1 3
F. =(—kx+ax + bx }=—— — U(x)=1k—tax* —ibx’ +C
x

12. (1) Jane, looking for Tarzan, is running at top speed
(5.0m/s) and grabs a vine hanging vertically from a tall tree
in the jungle. How high can she swing upward? Does the
length of the vine affect vour answer?

12. The only forces acting on Jane are gravity and the vine tension. The tension
pulls in a centripetal direction, and so can do no work — the tension force is
perpendicular at all times to her motion. So Jane’s mechanical energy is
conserved. Subscript 1 represents Jane at the point where she grabs the vine, and
subscript 2 represents Jane at the highest point of her swing. The ground is the

zero location for gravitational potential energy [_v = U). We have v, = S.I}m/ S, v, .y

v, =0, and v, =0 (top of swing). Solve for y,, the height of her swing.
Lmv! +mgy, =+mvi +mgy, — Lt +0=0+mgy, —

v (5.0 m/s):
y, = =—-= -
©2g 2(9.80m/s?)

=127T6m=|1.3m

No |, the length of the vine does not enter into the calculation, unless the vine is less than 0.65 m
long. If that were the case, she could not rise 1.3 m high.




16. (II) A 72-kg trampoline artist jumps w:erlically upward from
the top of a platform with a

speed of 45m/s. (a) How &

fast is he going as he lands on

the trampoline, 2.0m below ) . : .

(Fig. 8-31)? (b) If the trampo- 16. (a) Since there are no dlsfmpatwe forces present, the mechanical energy of the persnn—tlrampnlme—

line behaves like a spring of Earth combination will be conserved. We take the level of the unstretched trampoline as the
lm

spring constant 5.8 X 10*N/m zero level for both elastic and gravitational potential energy. Call up the positive direction.
how far does he depress it? ’ Subscript 1 represents the jumper at the start of the jump, and subscript 2 represents the jumper
upon arriving at the trampoline. There is no elastic potential energy involved in this part of the
2.0

problem. We have v, =4.5 mfs, ¥, =20m, and y, =0. Solve for v,, the speed upon arriving

at the trampoline.

FIGURE 8-3.[ ﬁ , . . .
Problem 16. E =E, — <tmv, +mgy,=tmv,+mgy, — Tmv, +mgy, =smv,+0 —

v, =+ V] +2gy, = iJ(4.5 m/s)’ +2(9.80m/s?)(2.0 m) =£7.710m/s = (7.7m/s

The speed is the absolute value of v, .

(b) Now let subscript 3 represent the jumper at the maximum stretch of the trampoline, and x

represent the amount of stretch of the trampoline. We have v, =-7.710m/s, y, =0, x, =0,
v, =0, and x, = y,. There is no elastic energy at position 2, but there is elastic energy at

position 3. Also, the gravitational potential energy at position 3 is negative, and so y, <0. A

quadratic relationship results from the conservation of energy condition.
E =E Loy + mgy, + Lkl =Lm] + +Lh?
2 T Ey T2 MV, TmEY, o KX, = omy, Tmgy, Ty,

a
2
mv,

=0 —

rall—

Tmv; +0+0=0+mgy, +tky; — thy +mgy, -




-

~(72kg)(9.80m/s’ )i\/(?z kg) (9-80m/s*) +(5.8x10° N/m)(72kg)(7.71m/s)
(5.8x10° N/m)

=—-0.284m, 0.260m

Since y, <0,y =(-0.28mj|..

The first term under the quadratic is about 500 times smaller than the second term, indicating
that the problem could have been approximated by not even including gravitational potential
energy for the final position. If that approximation were made, the result would have been
found by taking the negative result from the following solution.

s ’ 72k
E,=E, — imi=1lk’ - y=v, %=(?.Tlm/s)J E _1027m

5.8%10° N/m

17. (II) The total energy E of an object of mass m that moves in
one dimension under the influence of only conservative
forces can be written as

1 2
E = —mv + U.
mu

Use conservation of energy, dE/df = 0, to predict Newton’s

second law. 17. Take specific derivatives with respect to position, and note that £ is constant.
; dE dv | dU dv dU
E=imv +U — —=%m{2v—1)+—=mv—1+—20
. dx dx ) dx dx
d dedv d
Use the chain rule to change p o &£ _ Y
dt dx  dt
dv dU dv dU
myr—+—=0 - m—=-—— — |ma=F
dx  dx dt dx

The last statement 1s Newton’s second law.



20. (II) A roller-coaster car shown in Fig. 8-32 is pulled up to  20. Since there are no dissipative forces present, the mechanical energy of the roller coaster will be
point 1 where it is released from rest. Assuming no friction, conserved. Subscript 1 represents the coaster at point 1, etc. The height of point 2 is the zero

calculate the speed at points 2, 3, and 4. location for gravitational potential energy. We have v, =0 and y =32m.

- .1 §2 —1 2 . . — , — 1 e
Point 2: —mv; +mgy, =-mv; +mgy, ; y,=0 — mgy, =-mv, —

/‘S\ 4 ‘ 3(:'“ v, =227, =\]2(9.3ﬂmf53](32m} —{25m/s

L)

F'GURE 8"32 |~1 m
A

Problems 20 ‘
and 34. hizaJs s Qe N CYole s i TV 8 (oD TG Tl i o3¢

-

; Point 3: Lmv, + mgy, =imv; +mgy, : y,=26m — mgy, =imv; + mgy, —
v, =J2g(y] -y)= \/Z(Q.BBm/sz)(ﬁm] =|11m/s

ot A Lo S . v = = Lpn? ;
Point4: Smv; + mgy, =smv, +mgy, : y,=14m — mgy =smv, + mgy, —

"~
e

. (IT) A block of mass m is attached to the end of a spring (spring -
stiffness constant k), Fig. 8-35. The mass is given an initial v, =428 (v-»)= Jz[g.gﬂm/s-'](lgm) =|19m/s
displacement x; from equilibrium, and an initial speed vy.

Ignoring friction and the mass of the spring, use energy
methods to find (a) its maximum speed, and (b) its maximum
stretch from equilibrium, in terms of the given quantities.

- ———
23. At the release point the mass has both kinetic energy and elastic potential energy. The total energy is
- Ieatalalelelelalatalclm : Lmv> +Lkx’. If friction is to be ignored, then that total energy is constant.
m { )1 191! | | 2 0 2 0 g g}'r
: / — i b ' (@) The mass has its maximum speed at a displacement of 0, and so only has kinetic energy at that
e - point.
FIGURE 8-35 Problems 23,37, and 38 Lmv, + Lk, =Lmv] L
C S &D, A0, ¢ J0. Em‘l.fu 5 xn —3mvm! — Vm = ‘VIZI +;Xu

() The mass has a speed of 0 at its maximum stretch from equilibrium, and so only has potential
energy at that point.

1o,? 4 Lfr? —
,mLD+IkxD

ué—-
l
-

I




31.

long. (a) If the coefficient of friction is 0.090, what is the ski’s
speed at the base of the incline? (b) If the snow is level at the
foot of the incline and has the same coefficient of friction, how
far will the ski travel along the level? Use energy methods.

35. (II) A skier traveling 9.0 m/s reaches the foot of a steady
upward 19° incline and glides 12 m up along this slope before
coming to rest. What was the average coefficient of friction?

(IT) A ski starts from rest and slides down a 287 incline 85m (a) See the free-body diagram for the ski. Write Newton’s second law

for forces perpendicular to the direction of motion, noting that there
is no acceleration perpendicular to the plane.

ZFL=FN—mgcns€ — F, =mgcosf —

F.=uF, = umgcost

Now use conservation of energy. including the non-conservative friction force. Subscript 1
represents the ski at the top of the slope, and subscript 2 represents the ski at the bottom of the
slope. The location of the ski at the bottom of the incline is the zero location for gravitational

potential energy [}-’ = U). We have v, =0, y, = ¥£sin#, and y, =0. Write the conservation of

energy condition, and solve for the final speed. Note that F, = y F, = y,mgcos 6.

35.

Lmv] + mgy, =Lmvi + mgy, + F,€ — mgfsin€=Lmv; + ymgflcosf —

v, = J2g¢ (sinf - 4, cos ) = JZ(Q.Sﬂm/{sl}{ES m) (sin 28" — 0.090cos 28" )

=2549m/s =|25m/s

Consider the free-body diagram for the skier in the midst of the
motion. Write Newton’s second law for the direction perpendicular to the
plane, with an acceleration of 0.

ZFL:FN—mgcosH:D — F,=mgcost —
Fy = u Fy = gymg cos 6

Apply conservation of energy to the skier, including the dissipative
friction force. Subscript 1 represents the skier at the bottom of the slope,
and subscript 2 represents the skier at the point furthest up the slope. The location of the skier at the

bottom of the incline is the zero location for gravitational potential energy {_}' = U). We have
v, =9.0 m,.u’s, =0, v,=0, and y, = dsin &.

Lmv + mgy, =Ltmv +mgy,+ F,d — 1mvi+0=0+mgdsinf+ umgdcosé —

v, —gdsinf vll (9.{] m/s.)2

M, = —tan19% =|0.020

= —t =
ad cosf 2ed cost! o Z(Q.Sﬂm/sg](IZm}cnslS'“



62. (I) How long will it take a 1750-W motor to lift a 335-kg
piano to a sixth-story window 16.0 m above?

63. (I) If a car generates 18hp when traveling at a steady
95 km/h, what must be the average force exerted on the car
due to friction and air resistance?

62. The work necessary to lift the piano is the work done by an upward force, equal in magnitude to the
weight of the piano. Thus W = Fd cos0° = mgh. The average power output required to lift the piano

is the work done divided by the time to lift the piano.

W mgh _ meh (335 kg)(9.80m/s")(16.0 m)
_——a = —} = =

t t P 1750 W

P =130.0s

63. The 18 hp is the power generated by the engine in creating a force on the ground to propel the car
forward. The relationship between the power and the force is Eq. 8-21 with the force and velocity in

the same direction, P = Fv. Thus the force to propel the car forward is found by F = P;’v. If the
car has a constant velocity, then the total resistive force must be of the same magnitude as the engine
force, so that the net force is zero. Thus the total resistive force is also found by F' = P/ V.

g P _ (18hp)(746 W/l hp) _ ot

Y (95 km/h)[L/sJ

3.6km/h




83. A 62-kg skier starts from rest at the top of a ski jump, point A
in Fig. 8-41, and travels down the ramp. If friction and air
resistance can be neglected, (a) determine her speed vy when

she reaches the horizontal end of the ramp
at B. (b) Determine the distance s to
A where she sirikes the ground
‘ | at C.
|

FIGURE 8-41 Problems 83 and 84.

83. (a) The speed v, can be found from conservation of mechanical energy. Subscript A represents the

skier at the top of the jump, and subscript B represents the skier at the end of the ramp. Point B
is taken as the zero location for potential energy (y = U). We have v, =0, y, =40.6m, and

¥, =0. Solve for v,.

E,=E, —

2 _1 2 _1 2
H!VA + mgy_ﬁ =3 m‘LB + mgyu — mgvA =3 mvB

vy =220, =\/2(9.80m/53)(44}.6m] =28.209m/s =|28.2m/s

Now we use projectile motion. We take the origin of coordinates to be the point on the ground
directly under the end of the ramp. Then an equation to describe the slope is y, = —xtan30°

_>

ra|—

The equations of projectile motion can be used to find an expression for the parabolic path that
the skier follows after leaving the ramp. We take up to be the positive vertical direction. The

initial y-velocity is 0, and the x-velocity i1s v, as found above.

X=Vel 3 Yy =Vo 380 =¥, —38(x/vs)
The skier lands at the intersection of the two paths, so ¥ dope = Vorsi*

-

.:I»’slcpq = }’pm:-j — —xtan30°= "lr'ﬂ, ——ég[i} —5 gxl _ X(ZV; tﬂﬂSﬂc‘)—?_.yﬂV]_; -0 —s

Vg

[Evé tan 3{Ic] " \/(EV; tam 3{]5)3 + Sgynpé (v; tan3ﬂ°) + J[v; tan 3.:]0]-’ + nguv;
= =

2g g
Solving this with the given values gives x =-7.09m, 100.8m. The positive root is taken.
. x 100.8m
Finally, scos300°=x — s= = =(116m|.

cos30.0°  cos30.0°




00. Thf:kSI:l;a” lnfjssi: fm ;Il{ig‘lg wlthmj‘t_frlctlnlzl Ell‘-f“'f th"?lllﬂl_ape‘d 90. (a) Draw a free-body diagram for the block at the top of the curve. Since the
track shown in rig. 5—-441s to remain on the track at all times, block is moving in a circle, the net force is centripetal. Write Newton’s

even at the very top of the loop of radius r. (a) In terms of the second law for the block, with down as positive. If the block is to be on
given quantities, determine the minimum release height A.

Next, if the actual release height is 2A, calculate the normal

the verge of falling off the track, then F =0.

force exerted (b) by the track at the bottom of the loop, YR =Famg=mvi[r — mg=mv, [r — v, =\gr
(¢) by the track at the top of the loop, and (d) by the track Now use conservation of energy for the block. Since the track is frictionless, there are no non-
after the block exits the loop onto the flat section. conservative forces, and mechanical energy will be conserved. Subscript 1 represents the block

at the release point, and subscript 2 represents the block at the top of the loop. The ground is
the zero location for potential energy ( V= 0). Wehave v, =0, y,=h, v,= \/ gr,and y, =2r.
Solve for A.

E=E, — imvi+mgy =imv;+mgy, — O0+mgh=1mgr+2mgr —

FIGURE 8-44
Problem 90.

h=|2.5r

(b) See the free-body diagram for the block at the bottom of the loop. The net
force is again centripetal, and must be upwards.

ZFR =F,—-mg= mvz/r — F,=mg+ mvfnm/r
The speed at the bottom of the loop can be found from energy conservation,
similar to what was done in part (a) above, by equating the energy at the
release point (subscript 1) and the bottom of the loop (subscript 2). We now have v, =0,

};I = 2h — 5)', and )/‘2 =(0. Solve for vz-

E =E, — -;-mvl‘ +mgy, = %mvi +mgy, — 0+5mgr= %mvimm +0 —

"'immm=10gf e A 7 =mg+mv§mm/r=mg+10mg= 11lmg

(c) Again we use the free body diagram for the top of the loop, but now the normal force does not
vanish. We again use energy conservation, with v, =0, y, =3r, and y, =0. Solve for v,.

ZFR =F, +mg=mv2/r —= By =mvfop/r—mg

E=E, — imv+mgy =1imv+mgy, - 0+ 3mgr=%mv;p+0 —

(d) On the flat section, there is no centripetal force, and F, = |mg|.




