KepaAaio 9
['pappikn Opun




[Mepiexopeva KepaAaiou 9
« 2xéon Opung kal Auvaung
* AilaTpnon TnG opuNg
 Kpouon kail QBnon
« AlaTAPNON EVEPYEIOG KAl OPHAS OTIC KPOUOEIG
* EAOOTIKEG KPOUOEIC O€ Hia didoTOaOoN
* AveAaoTIKEG KpoUoe€ig
 KpoUoeig o€ TTOAAEG OIOOTACEIG
* To KEVTPO TNG Halag

* Metagopikn Kivnon kai To KEvrpo tng Madag



9-1 2xéon OpuAG Kal AUvapung

H opun gival d1avuoua TTou opideTal ATro TNV
oxéon

p = myv.
O puBuoOC peETABOARG TNG OPUNG MOG OIVEI TNV
ouvaun: B
sf - .
dt
H amrodeign tng oxéong Baciletal otov 2° Nopo
ToUu NeuTwva.
dp B dmv B dv B

- —_m—=ma=F
ac  dt g ™
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‘Evag KaAOGg TTaiXTnG ToUu TEVIC UTTOPEI va oepBipel TN
MTTaGAa ge TaxuTnta 55 m/s (200km/h). Eav n ptrdaAa
CuyiCel 0.060 kg ka1 TTOpAUEVEI OE ETTAPN ME TNV
pakéta yia 4 ms (4 x 103 s), Bpeite TNV péon SUvaun
TTOU OOKEITAI TNV MTTAAA. Eival apKeTA n duvapun
QUTH VO ONKWoel éva atopo 60-kg ;

APPROACH We write Newton’s second law, Eq. 9-2, for the average [orce as

Ap mi, — My,

F . = =
e A At
where mv, and mu, are the initial and final momenta. The tennis ball 1s hit when
its mnitial velocity v is very nearly zero at the top of the throw, so we set v, = 0,

whereas v = 55 m/s is in the horizontal direction. We ignore all other forces on the
ball, such as gravity, in comparison to the force exerted by the tennis rackel.
SOLUTION The force exerted on the ball by the racket is

Ap mv, — my; _ (0.060kg)(55m/s) — 0

F , pr— —_—
avE Al At 0.004 s

== K00 N.

This 1s a large force. larger than the weight of a 60-kg person. which would
require a force mg = (60kg)(9.8m/s’) = 600N to lift.

NOTE The force of gravity acting on the tennis ball is mg = (0.060 kg]{g.ﬂ m/s’) =
.59 N, which justifies our ignoring it compared to the enormous force the
racketl exerts.

NOTE High-speed photography and radar can give us an estimate of the contacl
time and the velocity of the ball leaving the racket. But a direct measurement ol
the force is not practical. Our calculation shows a handy technique for deter-

mining an unknown force in the real world.



H Trapoyxn vepou givai 1.5 kg/s kai n
TaxutnTa pong 20 m/s. NMNéon duvaun
OOKEI TO VEPO TTAVW OTO OUTOKIVNTO;
(ayvooUME TO «TTITCIAICHAY)
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v =20 m/s

APPROACH The water leaving the hose has mass and velocity, so it has a
momentum py,iy in the horizontal (x) direction, and we assume gravity doesn’t
pull the water down significantly. When the water hits the car, the water loses this
momentum {prog = ). We use Newton’s second law in the momentum form to
[ind the lorce that the car exerts on the water to stop it. By Newton’s third law,
the force exerted by the water on the car is equal and opposite. We have a
continuing process: 1.5 kg of water leaves the hose in each 1.0-s time interval. So
let us write F = Ap/Ar where Af = 1.0s, and muvg, = (1.5 kg)(20m/s).
SOLUTION The force (assumed constant) that the car must exert to change the
momentum of the water is
‘E"F Prinal — Pinitial 0 — 30 kgm‘f"g

F — = = = = _HDN.
At At 1.0s

The minus sign indicates that the force exerted by the car on the water is oppo-
site to the water’s original velocity. The car exerts a force of 30N to the left to
stop the water, so by Newton’s third law, the water exerts a force of 30N to the
right on the car.

NOTE Keep track of signs, although common sense helps too. The water is moving

to the right, so common sense tells us the force on the car must be to the right.



9-2 Alathipnon Tng Opung

O1 peTpnoeig (Treipapara) deiXvouv OTI KATA TNV
OIApPKEIO MIOG KpoUOoNS N opMNn Oev METABAAAETAL.
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9-2 Alathipnon Tng Opung

—_—

B Bgn Edv  epoppéooupe  Tov

Before , . ]
collision {72 vopo Tou Neutwva Trepi
| ‘F'/r opdong ka1 avrtidpaong,
@ BAéTToupe OTI gPOOOV ©
clision Ep N «XPOVOg» TNG Kpouong
N givalr TTOAU MIKPOG WOTE
PB MHN va éxoupe Tnv dpdon
After @ angaler’]g 50V“|~"\§1 Vla
collision KGBe SUvaun UTTapXEl N
" & «avﬁi}pacr’l ™TMe»  Ka
ETTOMEVWIG n opMHA

dlarnpeitai
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9-2 Alatnpnon Tng Opung
Na TToAAd avTikeigeva (>2),

AP dp; ~
— =3 = YF..
dt dt ‘

OT1ToU F; €ival N CUVOAIKN ESWTEPIKN
OUVAMN OTO AVTIKEIMEVO |

OT1rou F_,, €ival N CUVOAIKN ESWTEPIKN
Ouvaun oTo CUCTNMUA



9-2 Alathipnon Tng Opung

Apxn dlaTnPNonNg TG OpHNG:

Otav n 6VVolIKY) ECOTEPIKY OVVOUN TTOD
OCKEITAL OE EVO. CUGTHUO EIVAL UNOEV, 1
OUVOAIKY OpuUN TTOPOUEVEL oToOEp.

n,
H ocvvolixkny opun evog amouovmusvon
CUGTHUATOS TTAPOUEVEL aTAlOEPT].



vy =240 /s vp=0

L [|(atresy

‘Eva Bayovi tpaivou 10,000-kg, A, KiveiTon pE af |
Tax0TNTO 24.0 M/S KOl GUYKPOUETAI PE VOl T TR e A
TTavopoldTutro Bayovi, B, TTou gival akivnro.
E@ooov Ta Bayovia «KAEIOWOOUV» Trola €ival N
TOXUTNTA TOUG META TRV KpOoUON;

Finitial =  Final -
SOLUTION The nitial total momentum 1s
Poitial = Moy + Mgty = MU,

because car B 1s at rest mitially [fup, = {}}. The direction 1s to the right in the +x
direction. After the collision, the two cars become attached, so they will have the
same speed, call it ©°. Then the total momentum after the collision 1s

Pina = (my + mg)v".
We have assumed there are no external forces, so momentum is conserved:

Pmuial = Pﬁnnl

mava = (my + mgjv'.
Solving for v', we obtain

. 1 B ( 10,000 kg '

oo Ma 24.0 = 12.0m/s,
L — 10,000 kg + 10,000 kgj{ m/s) m/s

to the right. Their mutual speed after collision is half the initial speed of car A
because their masses are equal.

NOTE We kept symbols until the very end, so we have an equation we can usc in
other (related) situations.

NOTE Wec haven't mentioned friction here. Why? Because we are examining
speeds just before and just after the very briefl time interval of the collision, and
during that brief time friction can’t do much—it is ignorable (but not for long:
the cars will slow down because of friction).
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MTropoupue va EPUNVEUCOUME Kal TN Kivnon €vOg
TTUpaUAoU Bacn TNG apxng Olatnenong TNnG
OpMNS. YTTOOETOUME OTI O TTUPOAUAOG KaI TO
KOUCIMO  OTTOTEAOUV  €va  OUCTNUO KAl

AauBavouue utrown, TNV METABOAN TG NAlaG.




| m—- |
YmoAoyioTe TNV dAvAKPOUOHN €VOG Before shooting (at rest)

omAou Ttrou (Quyidel 5.0-kg Kkai
eKTOSEUEI TNV O@aipa padag 0.020-kg VR
ME TaXOTNTO 620 M/s. Py e . —
— b
After shooting

SOLUTION Lect subscript B represent the bullet and R the rifle: the final velocities

are indicated by primes. Then momentum conservation in the x direction gives

momentum before = momentum after
MVg + Mg = Mgl + Mgy
0o + 0 = mgig + My
50
. Mmpy (0.020 kg) (620 m/s) B
v = — . — (5.0 kg) = —2.5m/s.

Since the rifle has a much larger mass, its (recoil) velocity is much less than that
ol the bullet. The minus sign indicates that the velocity (and momentum) ol the
rifle is in the negative x direction, opposite to that of the bullet.
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(a) H Mapia @opdel TESIAQ TTAYOU KOl ApXIKA gival akKivnTn TTAVW OTOV
mayo. Maveral amrd Eéva EAKNOPO TTou KIVEITAI TTAVW OE TTAYO ME MNOEVIKA
TPIPR, Kol apyilel va Kiveitalr pali Tou. H Taxurnta Ttou €AKnOGpou
QUEAVETAI, MEIWVETAI I} TTOPAMEVEI OTOBEPNR;

H Ttaxurnta peiwverar 01611 n pala ToU €AKNOBpou eivalr Twpa
MEYOAUTEPN KOl TTPOKEINEVOU Va dlaTneNOEi N opun TTPETTEI VA MEIWOEI
n TaxuTnTa
Mg
m,, 0+m_v. =(m, +m_ V=V = Ve = V<V,
M. +Mm,,

'

1
(B) Eav n Mapia peTd a1rd Aiyo a@noel 1o éAK<r|9po TI 0a cupPei;

H Mapia mrpéTrel va dlatnprnoel TNV OPHI TNG ETTOHEVWG EXOUME, OTTWG
ETTIONG KAl TO EAKNOPO ETTOHEVWG EXOUME:

(m, +mc V=m,V,, + MV, =V=V,, =V,

Copyright © 2009 Pearson Education, Inc.



9-3 Kpouoe€ig kai QOnon

Katd TIC KPpOUOEIG T
OVTIKEIMEVA
TTAPANOPPWVOVTAI AOYW TWV
MEYAAWYV OUVAMEWYV TTOU

AVOTTTUCOOVTAI
_ dp
F —_ =
dt
dp = F dt
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9-3 Kpouoe€ig kai QOnon

Opidoupe TNV QONON, J:

II-_>
T = Jth.
I

2TNV oucia BAETTOUME OTI N WONON €ival
N pETaBoAn TG opHNgG:

tl‘_, .
Ap = pr — p; = Jth =7
t.

1



9-3 Kpouoe€ig kai QOnon

O xpOvo¢ Ta KpOUOoNG Eival YEVIKA MIKPOG, Kal
ETTOMEVWG MTTOPOUNE KATA TTPOCEYYIOH VA
XPNOIMOTTOINCIUE TNV MEC OUVOMN ONA.

e
Fo Al = Jth.

l‘.
S\

F

Force, F' (N)
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|

0 Time, t (ms) 0
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Edav 1o X€pI KiveiTal pe 10 m/s Bpeite
TNV WONonN €vog XTUTTAMATOG
«KOPATED.

APPROACH We use the momentum-impulse relation, Eq. 9-6. The hand’s
speed changes from 10 m/s to zero over a distance of perhaps one cm (roughly
how much your hand and the board compress before your hand comes to a stop,
or nearly so, and the board begins to give way). The hand’s mass should probably
include part of the arm, and we take it to be roughly m = 1kg.

SOLUTION The impulse J equals the change in momentum
J = Ap = (1kg)(10m/s — 0) = 10kg -m/s.

We obtain the force from the definition of impulse F,,, = J/Af; but what is Ar?
The hand 1s brought to rest over the distance of roughly a centimeter: Ax = 1 cm.
The average speed during the impactis » = (10m/s + 0)/2 = 5m/s and equals
Ax/At. Thus Af = Ax/® = (107 m)/(5m/s) = 2 % 10™%s or about 2 ms. The

force is thus (Eq. 9-6) about

J 10kg-m/s )
Frg = ~— = =2~ S000N = SkN.
Al 2 X 107 s
S SECTION 9-




9-4 Alatpnon evépyelag Kal OpURG KATA TIS KPOUOEIG

— VA VB
:W 4—&]-3)_—
Approach
Q.‘Bj
Collision
Vi o L v’y
ﬂ— : —l.BH
If elastic
Vi i-"’B
<4 By
If inelastic
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***H opun d1aTnpeital yia
OAEG TIG HOPPES KPOUOEWV***

Kpouoe€Ig KATA TIG OTTOIEG
dlarnpeital n KivnTiki
Evépyela ovouadlovrai
EAOOTIKEG.

Otav n K.E. aAAalel Exoupe
aVEAQOTIKEG KPOUOEIG.

2TNV TTEPITITWON TTOU £XOUME
véeg Hadag (GAAa avTiKEipgeva
META TNV KpOUON) TOTE
£XOUME reactive KpoUOEIG
(dnA. TToU 0dnyouv o€
XNHUIKES AVvTIOPAOTEIG)



Na EAaOTIKA Kpouon dUo
ma  mp YVWOTWV Hadwyv m,; Kal m, ,
| ME YVWOTEG TAXUTNTEG VKA
x Vg, MTTOPOUME VA
UTTOAOYIOOUME TIG TEAIKEG
TaXUTNTES V' KAl Vy', ATTO
y TIG OUO OXEOCEIG TIG
d1aTRAPNONG TNG EVEPYEING
ma_ o m__ KOOI TNG OPUNG
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H pmmdAa A pe pada m Kiveital € TaXUTNTA V, KOI OUYKPOUETAI
«KAaTaKEPAAa» JE TNV B iong padag. Eav utro0EooupE OTI EXOUME EAACTIKA
Kpouon BPEITE TIG TEAIKEG TAXUTNTEG OTAV (O) OTAV KAl OI U0 MTTAAEG
APXIKA KIVOUVTaIl ME TAOXUTNTEG (V, KaI V), (B) 6Tav v =0
SOLUTION (a) The masses are equal (m, = my = m) so conservation of
momentum gives

vy T g = vy + vy
We need a second equation, because there are two unknowns. We could use the
conservation of kinetic energy equation, or the simpler Eq. 9-8 derived from it:

Uy — Vg = Vg — Uy

We add these two equations and obtain

Vg = s
and then subtract the two equations to obtain

Uy U -
That is, the balls exchange velocities as a result of the collision: ball B acquires
the velocity that ball A had before the collision, and vice versa.
(&) If ball B 1s at rest initially, so that vy = 0, we have

vty = v, and v, = 0.
That 1s, ball A 1s brought to rest by the collision. whereas ball B acquires the
original velocity of ball A. This result is often observed by billiard and pool
players, and is valid only if the two balls have equal masses (and no spin is given
to the balls). See Fig, 9-14.
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‘Eva avTIKEigeVO PE pAda M, TTPOCKPOUEI € EVA DEUTEPO Mg, (O «OTOXOG») TTOU
gival apxika akivnro (Vg = 0). Eav Ta avTiKEigeva £Xouv dIAQOPETIKEG MACES Kal

EXOUNE KATOKEPAAA EAQOTIKEG KPOUOEIG, BpeiTe (a) ESiIowaoelg yia TIG Vg’ KAl V'’
OUVOPTAOEI TWV V, , M, Kal Mg. (B) T oupBaivel étav m, >> mg. () Ti cupBaivel
oTav m, << mg.

APPROACH The momentum equation (with vy = 0) is
Mgy = m.t('“ﬁ - “:'u]-
Kinetic energy 15 also conserved, and to use it we use Eq. 9-8 and rewrite it as

Py = g — by.

SOLUTION (a) We substitute the above v, equation into the momentum equation
and rearrange to find

, 21,
e = Va :
m, + mg

We substitute this value for vy back into the equation v, = vy — v, to oblain

. ( My — Mg
1‘:‘.-"; = 'i'.-:'A .
(ﬂ!ﬂ + f'”'“;

To check these two equations we have derived, we let m, = my. and we obtain
vg = vy, and vy = (.
This i1s the same case treated in Example 9-7, and we get the same result: for

objects of equal mass, one of which is initially at rest, the velocity of the one
moving initially is completely transferred to the object originally at rest,
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(b)) We are given vy = 0 and m, == myp. A very heavy moving object strikes a
light object at rest, and we have, using the relations for vy and v, above,

vh = 20U,

Py = Wu.
Thus the velocity of the heavy incoming object 1s practically unchanged, whereas
the light object. originally at rest, takes off with twice the velocity of the heavy
one. The velocity of a heavy bowling ball, for example, 18 hardly affected by
striking a much lighter bowling pin.
(¢) This time we have vy = 0 and m, <<= myz. A moving light object strikes a
very massive object at rest. In this case, using the equations in part (a)

vg =~ (0

Py &= —U,.
The massive object remains essentially at rest and the very hight incoming object
rebounds with essentially its same speed but in the opposite direction. For
example, a tennis ball colliding head-on with a stationary bowling ball will hardly

affect the bowling ball, but will rebound with nearly the same speed it had
initially, just as if 1t had struck a hard wall.
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‘Eva rpwrtoévio (p) palag 1.01 u (unified i;p

atomic mass units) Kiveitail ge taxornra 3.60 O —-— @
X 104 m/s ka1 ouykpoueTtal (KaTakEPaAa) Je P He
éva Trupnpva HAiou (He) (m,, = 4.00 u) apxiKka

akivnTto. lNoleg gival o1 TEAIKEG TOXUTNTEG TWYV ()

owMaTIdiwyv; YTroBéTOoUuUE OTI OI KPOUOEIG Vp

YivOVTOI OTO KEVO.
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APPROACH This is an elastic head-on collision. The only external force is Earth’s
gravity, but it 1s insignificant compared to the strong force during the collision. 50
again we use the conservation laws of momentum and of kinetic energy, and
apply them to our system of two particles.

SOLUTION L.t the proton (p) be particle A and the helium nucleus (He) be
particle B. We have vg = vy, = 0 and v, = v, = 3.60 X 10*m/s. We want to
find the velocities v, and vy, after the collision. From conservation of momentum,

mpvy + 0 = myvy + My Ve

Because the collision is elastic, the kinetic energy of our system of two particles is
conserved and we can use Eq. 9-8, which becomes

]

Thus

"

vy = Ve — Un .
and substituting this into our momentum equation displayed above, we get

Mptp = MyVye — MpUy + Mg Ve

ptp p
Solving for vy, . we obtain
2m, v 2(1.01 u)(3.60 % 10*m/s
Wy = ——— = { X /s) _ 1.45 x 10* m/s.
m, + P, 501 u



P
( ——
P He
"ir’p v He

- e

The other unknown 1s 1:’p, which we can now obtain from

U = Ve — U = (1.45 x 10°m/s) — {’!-m * 1ﬂ4m,f5:| = —2.15 ® 10" m/s.

The minus sign for v tells us that the proton reverses direction upon collision,
and we see that its speed is less than its initial speed (see Fig. 9-15).

NOTE This result makes sense: the lighter proton would be expected to “bounce
back™ from the more massive helium nucleus, but not with its full original velocity
as from a rigid wall (which corresponds to extremely large, or infinite, mass).
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0-6 AveAaoTikéC Kpouoeig

Me aveAAOTIKEG KPOUOEIGC TUAMO TNG APXIKAG
EVEPYEIOG TWV «AVTIOPWVTWV» XAVETAlI OE
AAAEC MOPWPEC eVEPYEIOG OTTWG OUVAMIKA N
«KECWTEPIKN» €EVEPYEIO. AUTO WMTTOPEI Vv
oUuBEl OTOV TO CUYKPOUOHEVO OCWHATIOIO OEV
€ival ACUMTTIECTEC OQAIPES (TT.X. MOpPIO AVTI
Yia ATONO) aAAQ £XOUV EOWTEPIKOUSG BaBuoUg
eAeuBepiac. Mia evreAwg aveAAOTIK Kpouon
EXOUME OTav Ta OUO OUYKPOUOMHEVO
CWHMATIOIO META TNV OUYKPOUON KOAANOOUV
KO YiVOUV €va.



Eav Bayovi palag 10,000-kg, A, Kiveital pe Taxutnta 24.0 m/s Kai
OUYKPOUETOI NE OEUTEPO TTAVOMOIOTUTTO aKivnTo Bayovi, B. Metd Tnv
Kpouon Ta Bayovia KAsidwvouv. Bpeite TTOON a1rd TNV APXIKK EVEPYEIA
dlaTnpEiTal oav KIVNTIKA META TV KpoUOo

APPROACH The railroad cars stick together after the collision, so this is a
completely inelastic collision. By subtracting the total kinetic energy after the
collision from the total initial Kinetic energy, we can find how much energy is
transformed to other types of energy.

SOLUTION Before the collision, only car A is moving, so the total initial kinetic
energy is sm, 05 = 5 (10,000 kg)(24.0m/s)? = 2.88 = 10°J. After the collision,
both cars are moving with a speed of 12.0m/s, by conservation of momentum
(Example 9-3). So the total kinetic energy afterward is 4 (20,000 kg)(12.0m/s)* =
1.44 > 10" J. Hence the energy transformed to other forms is

(288 % 10°7) — (1.44 x 10°]) = 1.44 x 10°].

which 1s half the original kinetic energy.

v = 24.0 m/s vp=0

(at rest)

After collision
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To PBaAAICTIKO EeKKPEMEG gival Eva Opyavo HME TO OTTOiIO
MTTOPOUHE VO HMETPROOUME TNV TaAXUTNTA MI0G o@aipag. H
o@aipa Halog m, KAPPWVETAlI € £€va UTTAOK palag M, TTou
OTTOTEAEI £Va EKKPEMEG. ZAV ATTOTEAEOHMO TO cUoTnua M1TAok

T)MZO

RN

| ,

- I__jlx

> I |
RUR
| A |I
L__b

-G—I-‘

=
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Kal o@aipa, MpeTartomriovralr o€ Ugog, h, amrd TO OTrO0IO
TTPOOodIoPI(OUME TNV TAXUTNTA TG OPAipag

APPROACH We can analyze the process by dividing it into two parts or two lime
intervals: (1) the time interval from just before to just after the collision itself,
and (2) the subsequent time interval in which the pendulum moves from the
vertical hanging position to the maximum height h.

[n part (1), Fig. 9-16a, we assume the collision time 18 very short, so that the
projectile comes to rest in the block before the block has moved significantly
from 1ts rest position directly below its support. Thus there 15 effectively no net
external force, and we can apply conservation of momentum to this completely
melastic collision. In part (2), Fig. 9-16b, the pendulum begins to move, subject to
a net external force (gravity, tending to pull it back to the vertical position); so for
part (2), we cannol use conservation of momentum. Bul we can use conservation
of mechanical energy because gravity is a conservative force (Chapter 8). The
kinetic energy immediately after the collision is changed entirely to gravitational
polential energy when the pendulum reaches its maximum height, h.



’UM=0

SOLUTION In part (1) momentum is conserved:
total P before = total P after
my = (m + M),

before they have moved significantly.

system reaches its maximum height. Thus we write

or

Sm+ Mp* +0 = 0+ (m+ M)gh
We solve [or »°;

v’ = V2gh.
Inserting this result for " into Eq. (i) above, and solving for v, gives
et + M + M
o | p=2" =127 - \V2¢gh,

_ e i
__i?’ I_h which is our final result.

NOTE The separation of the process into two parts was crucial. Such an analysis
is a powerful problem-solving tool. But how do you decide how to make such a
division? Think about the conservation laws. They are your tools. Start a problem
by asking yourself whether the conservation laws apply in the given situation.
Here, we determined that momentum is conserved only during the brief collision,
which we called part (1). But i part (1), because the collision is inelastic, the
conservation of mechanical energy is not valid. Then in part (2). conservation of
mechanical energy is valid, but not conservation ol momentum.

Note, however, that if there had been significant motion of the pendulum
during the deceleration of the projectile in the block, then there wouwld have been
an external force (gravity) during the collision, so conservation of momentum
would not have been valid in part (1).
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where v’ is the speed of the block and embedded projectile just after the collision,

In part (2), mechanical energy is conserved. We choose y = (0 when the
pendulum hangs vertically, and then y = h when the pendulum-projectile

(K + U)justafter collision = (K + U) at pendulum’s maximum height



9-7 Kpouoeig o€ 2 kKal 3 D100 TACEIG

H diatApnon Tng &vépyelag Kal TG OPMNAG MTTOPEl va
aglotroinBei yia Tnv emiAvon TPORBANHATWY KPOUCEWYV OE 2
n 3 OI00oTACEIG. TIC TTEPICOCOTEPEG QPOPEGC OMWG N
TTOAUTTAOKOTNTA TOU TTPOBARNMHATOGC TO KOBIOTA TTOAU
OUOKOAO yIa va eTTIAUBEI eTTAKPIBWG.

2TNV £IKOVA TT.X. YVWOT TWV Halwv
KOI TWV HETPWYV TWV TAXUTATWYV OEV
emmapkn. MNp&mel va yvwpilOUME TIG y

wVieC... 4
Ywvigg ’”% A
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H prdAa A TTou KiveiTal Je oToudn Vv, =
m/s oTnv d01eUBuvon +X XTUTTA ThV

3.0

TTOVOHOIOTUTTN UTTAAa B (akivnTn apXIKwG).
MeTd Tn Kpouon o1 NTTAAEG aKOAOUBOUV TIG
TTOPEIEG TOU OXAMOTOG. BpeiTe TNV TEAIKA
o1Toudn TNG KABE MTTAAAG META TNV KpOUO.

and

sin(45°)

g = —Vy————
" ' sin( —45°)

gives [recall that cos(—8) = cos ).

(for v) 0 = mw, sin(457) +

Copyrigh. « cuve + canoun Luusuuuny wie.

vy = v, cos(45") + vpcos(45°) =
50
T 3.0 l‘ﬂg'(s
(H = = =
2 cos(457) 2(0.707)

. LAY
~, A
@;—P_ —_———

SOLUTION We apply conservation of momentum for the x and v components,
Eqs. 9-9a and b, and we solve for ¢, and vg. We are given m, = mg(= m), so

(for x) i, = muv) cos(45%) + muvg cos( —457)

muy sin —457).

21 cos(457),

= 2.1m/s.

The m’s cancel oul in both equations (the masses are equal). The second
equation yields [recall that sin{—f#) = —sin #|:

| sin45° ,
— | —— = | = V.
—sin 45 '

So they do have equal speeds as we guessed at first. The x component equation



MpwTtdvio TTOoU KiveiTal Pe Taxo 8.2 x 10° m/s
OUYKPOUETAI AVEAQOTIKA pe  OeUTepoO

TPWTOVIO a1rd éva oTdxo Yopoyovou. To o
LN\,

éva TPWTOVIO TTaPATNPNONKE VA «OKEQAZEI» oo — —— ————
atré TOV XWpPo aAAnAsmidpaong (kpouong) |
M€ Ywvia 60°. Tloigg gival n TEAIKEG TAXUTNTES
TWV OUO TTPWTOVIWV Kal Trola €ival N ywvia
oKEdaong Tou OEUTEPOU.

SOLUTION Since m, = my, Egs 9-9a, b, and ¢ become

vy = vy cosfy, + vycosfy (i)
0 = v} sind, + vysinfy (i)
vh = Ui + R, (iii)

where v, = 82 % 10°m/s and ¢, = 60° are given. In the first and second equa-
tions, we move the vy terms to the left side and square both sides of the equations:
vh — 2u, vl cosfly, + vicos @, = vjcos’ O
visin® #y = g sin’ 0.
We add these two equations and use sin*f + cos’f = 1 to get:
vy, — 2u, v cosfly, + vy = vy,
Into this equation we substitute v = v} — v/, from equation (iii) above, and get

r-l ¥
2oy = 2w, v cosf,
or

v, = wycosf, = (82 x 10°m/s){cos60”) = 4.1 x 10°m/s.
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nNB FIGURE 9-20 Photo of a proton-
proton collision in a hydrogen bubble

chamber (a device that makes visible
the paths of elementary particles).
The many lines represent incoming
protons which can strike the protons
of the hydrogen in the chamber.

. ' ;o -

To obtain vy, we use equation (i) above (conservation of kinetic energy):
vy = Vi — vi = 7.1 X 1P m/s.

Finally, from equation (ii), we have

5

: vy 4.1 % 10° m/s | ]
sinfly, = ——sinf, = — —— |(0.866) = —0.50,
iy VT 10 mys
so fy = —30° (The minus sign means particle B moves at an angle below the

x axis il particle A is above the axis, as in Fig. 9-19.) An example of such a
collision 18 shown in the bubble chamber photo of Fig. 9-20. Notice that the two
trajectories are at right angles to each other after the collision. This can be shown
to be true in general for non-head-on elastic collisions of two particles of equal
mass, one of which was at rest initially (see Problem 61).
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NMwc¢ Auvouue TTpoBARMATAO KPOUONG:

1. AIoAEyoupuE TO cuoTnua. Eav gival
TTOAUTTAOKO BEWpPOUUE UTTOOUVOAQ TOU
OUOTAMOTOG KOl EQAPMNOJOUME OE AUTA TNG
O1aTAPNON EVEPYEING KOI OPMNAG.

2. YITAPXElI EEWTEPIKA Ouvaun; Edav o xpovog
oaAAnAsTTiOpaONG gival MIKPOG TOTE MTTOPOUME
VO TNV 0YVONOOULE.

3. ZXeO01AloUHE OIAYPAMMATO OPXIKWYV KAl
TEAIKWYV TAXUTATWV.

4. AIoOAEYOUPE OUCTNUO CUVTETOYMEVWV.



5. Eapuoéloupe Tnv diatRpnon TnG opung o€
KAaOe diaoTaon.

6. Na eAaoTIKEG Kpouoelg Exoupe KAI diatnpnon
TNG KIVNTIKNG EVEPYEIQG.

/. NOvoupE.

8. Movadeg kal Tagn peyEboug.



9-8 Kévrpo Madlag (K.M.)

21N €1IKOva (a), Kivnon Tou dUTN €ival
OTTOKAEIOTIKA METOAPOPIKA. ZTNV £IKOVA (B) EXOUME
METAPOPIKA OAAG KOl TTEPICTPOPIKN Kivno.

P YTTapXel ONWGS Eva
£ /g\\? o~ onusio Tou Kot
}I Q / oTig Suo
o/ | \\f, e TMEPITITWOEIC
. ¥ g é‘ﬁ\ akoAouBei Tnv idia
|
z_

‘ \ TpoXId. To onpeio
- — \ aQUTO OvOoMaAdeTal
KENTPO MAZAZ
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9-8 Center of Mass (CM)

H yevikn Kivnon €vOo¢ AVTIKEINEVOU UTTOPEI
va BswpnBei we To ABpoICHA TNG
METAPOPIKNG Kivhong Tou KM cuv
TEPICTPOPIKIN N OOVNTIKA | AAAEG KIVAOEIG
mTEPIE TOU KM




Na o cwuatidia To KM gival TTAnCIECTEPO OTO
OVTIKEIMEVO ME TNV MEYOAUTEPN pAda:

Nia XA -+ ng Xpg UTRIN + nig Xp

XcMm
ma + mg M

otrou M gival n ouvoAikn pada.

N AB |

— VA

‘i . - X
?’?’IA .”?’IB

—xcm14’|
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Tpia atopa pE TTEPITTOU TNV 010 pala m
KABovTal TTAVW O& POUCKWTO OKAPOG
AVAWUXNAG OTIG BEoeig X, = 1.0 m, Xg =
5.0 m, kai X- = 6.0 m, KATa MKOG TOU
aova x. Bpeite TnVv 0€on Tou KM

APPROACH We¢ arc given the mass and location of the three people, so we
use three terms in Eq. 9-10. We approximate each person as a point particle.
Equivalently, the location of each person is the position of that person’s own CM.
SOLUTION We use Eq. 9-10 with three terms:
mx, + mxg + mxg m{.li:;H + X + .IL-_-:I
'tf_'f'-'l - =
m 4+ m+ m 3m

(1.0m + 5.0m + 6.0m)  12.0m
= ; = = 4.0m.

The oM 1s 4.0m from the left-hand end of the boat. This makes sense—it should
be closer to the two people in front than the one at the rear.
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Bpeite To KM TOU CUCTAMATOG

lf'r
®mc
1.50 m
B cM
Iem *
m
N ‘ B X

e——2.00 m ———

APPROACH We choose our coordinate system as shown (to simplify calculations) with
m 5, 4t the origin and mg on the x axis. Then m ., has coordinates x, = v, = 0; my has
coordinates xp = 2.0m, vy = 0; and m has coordinates x- = 2.0m, y- = 1.5m.
SOLUTION From Eqs. 9-11,

(2.50kg)(0) + (2.50kg)(2.00m) + (2.50kg)(2.00m)

Xom = 3(250ke) e
_ (250kg)(0) + (250kg)(0) + (250kg)(LSOm)
Yew = 750 kg S

The cM and the position vector Fg, are shown in Fig. 9-25, inside the “triangle™ as

we should expect. SECTIONM
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Na oykwodn oCUuuTTayn OVTIKEIMEVA, MTTOPOUME
VO (@OVOTIOTOUME OTTOTEAEITAI OATTO MIKPA
avTikeipyeva (aropal!) kai 10 ABpoicCua TOU
Yivopévou (Béon X pada) kaBe avTIKEINEVOU
O1a TNV ouVvoAIKN padla Ba pag €0ive To KM. H
OTO OpPI0O OTTOU TA AVTIKEIMEVA YivOuVv

ATTEIPOEAAXIOTA EXOUME .

~

1
Fey = Iv; Ji‘ dm.
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(a) Agi¢te 611 TO KM pI0G OpOIOHOP®NG
papdou pRkoug | kail pafag M Bpiokeral
OTO KEVTPO TNG pARdou, kai (B) Bpeite TO dm= Adx
KM €dv utro0£0TE OTI N TTUKVOTNTA TNG /
PABSOU METORBAAAETOI «YPOAUMIKA» OTTO A= Ol v ——» |~

A, OTNV APIOTEPN AKPN TNG OE A = 2A,, dx

otnv d&d1a akpn TNG.

)
L
x

APPROACH We choose a coordinate system so that the rod lies on the x axis
with the left end at x = 0. Fig. 9-27. Then vy, = 0 and z,, = 0.

SOLUTION (a) The rod 1s uniform, so its mass per unit length (linear mass density A) is
constant and we write it as A = M /£, We now imagine the rod as divided into infin-
itesimal elements ol length dx, each ol which has mass dm = A dx. We use Eq.9-13:

B N LS B VDD U i RN GO
Tow = 0 AT MM T M2

where we used A = M /L This result, x.,, at the center, is what we expected.

oM 2

il
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}?
/dm=ldx
ey ———f |

dx

x

(

)
-

(b)Y Now we have A = A, at x =0 and we are told that A increases linearly to

A =2}h at x = L. So we write
A= Al + ax)
= Ap at x =

In other words,

0, increases linearly, and gives A = 2A; at x = {

which satisfies A
e =1/, Again we use Eg. 9-13, with

il (1 + af) =2,
A=A (1 + x/E):
1 1 “*‘( ,x) Ao (2 X\ 5 A
w=—| Axdx = — + = |xdx = — —+ ———Eﬂ_
Fon ML_f” M‘:‘“Jﬂ ()" T M 3 6 M
Now let us write M in terms of Ay and £ We can write
- £ £ .IM 1'1 £ 3 "
M=Jdm=Jﬁdx=ﬁ[(1+—)dx=ﬂ1( ) = Z L
x=0 : A oot 2™
Then N ~
_ 2k _ 3,

which is more than halfway along the rod, as we would expect since there is more

mass to the right.
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Bpeite To KM TOU OXYMOTOG.

2.06 m— i

0 A » . 0.20 m X

/

cM{ .|
. : ... ~CM
APPROACH We can consider the object as two rectangles: rectangle A, which 1s
2.06 m % 0.20 m, and rectangle B, which is 1.48 m * 0.20 m. We choose the origin S .48 m
at () as shown. We assume a uniform thickness /. /
SOLUTION The oM of rectangle A is at CMg
x5 = L0O3m, yo = 0.10m,

The cm of B 1s at _{;12{]:;

xp = 1.96m, yy = —0.74m.
The mass of A, whose thickness is [, 1s

M, = (206m)(020m)(1)(p) = (0.412m*)(pr),
where p is the density (mass per unit volume). The mass of B is

My = (148m)(0.20m){pt) = (0.296 m*)(pt).
and the total mass is M = (0.708 m*)(pt). Thus

C Mux, + Myxy  (0412m7)(1.03m) + (0.296m?)(1.96 m)

Xem = = = 1.42m.
o M (0.708 m?)
where pf was canceled out in numerator and denominator. Similarly,
(0.412m*)(0.10m) + (0.296 m?){ —0.74 m)
Yem = ‘ = —0.25m,

(0.708 m?)

which puts the oM approximately at the point so labeled in Fig. 9-29. In thickness,
Zew = /2, since the object is assumed to be uniform.




To KEvTpo BAPOUG €ival TO ONUEIO EKEIVO OTO
OTTOi0 UTTOPOUME VO UTTOBECOUME OTI Opa N OTTOU
n BapuTtikn 6uvaun. TautideTal pe To KM eqpooov

n BapuTtikn OUvaun Oev HETARBAAAETAI OTIG
OI0OTACEIG TOU OVTIKEIMEVOU

— Pivot point
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9-8 Kévrpo Madac
To KEVTPO BAPOUG MTTOPEI VO TTPOCOIOPICTEI
TTEIPAUATIKA NECW AIWPNONG TOU AVTIKEIMEVOU
a1rd d1d@opa onueia. To KM dev BpioKkeTal
KOT OVAYKN MECO OTO OVTIKEIMEVO, TT.X. EVOG
Aoukoupdacg Tuttou doughnut’s €xel To KM oTto
KEVTPO TNG KEVTPIKNAG TOU TPUTTAG.
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9-9 KM ka1 yetagopikn Kivnon

H ouvoAikn OpMR €VOC CUCTHHATOS CWHATIOIWY
(T7.X. EVOG pHopiou) IcoUTAI JE TO YIVOMEVO TNG
OUVOAIKNG Hadag ME TNV TaxuTnTa Tou KM.

To aBpoiopa OAwvV Twv OUVANEWYV TTOU dpouV
TTAVW OTO OUCTNMO ICOUTAI ME TO YIVOUEVO tO
OUVOAIKNG padag ME TNV emmiTtayuvon tou KM.:

Ma ., = 2ZF..

BAEtroupEe OnA o011 To KM €vOC OUCGTHMATOG
CWHATIOIWV CUUTTEPIPEPETAI OOV AVTIKEIMEVO
ME Hala M TTavw OTO OTTOI0 OPA N CUVOAIKIN

ouvaun



‘Evag TTUPpAUAOG EKTOSEUETAI OTO AEPA. 2TO MEYIOTO UYOG
Kal o€ opI{OVTIO atTOoTAON d ATTO TO ONUEIO EKTOEEUONG
MIa EKPNEN MOoIPAlel TOV TTUPAUAO OTA OUO, £TOI WOTE TO
KOMMATI |, TTEQTEI KATAKOpU®@A oTnV yn. MNMou Ba Tréoel To
kKouuari ll; Yro0éoTe 611 g = oTaBgpN.

= —_—
, —
- h@ ~—
-~ ~ ~
~
N

1 D
e I ‘E’Qof,
7 | N \,
= |~ \*% B T2
=, = \N'g ~
&ie N o R
| N, ~
I \% N
£ ) LS
\
e — - : - s \ g — Qv\,_
: — \ 24
f= d > d -

RESPONSE After the rocket is fired, the path of the cM of the system continues
to follow the parabolic trajectory of a projectile acted on only by a constant
gravitational force. The M will thus arrive at a point 2d from the starting point.
Since the masses of I and II are equal, the cM must be mudway between them.
Therefore, part 11 lands a distance 3d from the starting point.

NOTE If part I had been given a kick up or down, instead of merely falling, the
solution would have been somewhat more complicated.

Copyright




9-10 ZuoTAMaTa JE HETARBANTA pHala

Epapuolovrag To vOuo Tou NeUuTwva oTO
ouoTNHUO BPICKOUNE OTI:

dP/dt = SF..

M C} ETropévwg,
(e M -
dv dM

zi_:"e)-(t - MI — (U — V)dl

M+dM e ﬁ
dv | _AM
MW = 2Feir + Veel

OT1T0oU VvV, EIVAI N OXETIKIN TAXUTNTA
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Ag utro0€éooupe 611 oxedidadeTal £va INAVTA HETAPOPA I
01640popo YUNVAOTIKAG. To OIAG evaTtroBéTel UAIKO TTAVW OTOV
IMavTta 75.0 kg/s o oTroiog Kiveital ge Taxurtnrag v = 2.20 m/s. (a)
Bpeite TTOON EMITTAEOV SUVANN ATTAITEITAI YIO VO CUVEXIOEI Va
KIVEITAI O IMAVTOG KAl META TNV evatré0e0on ToUu UAIKOU». (B) Mola
gival n 10X0G TTOU ATTAITEITAI ATTO TO MOTEP TTOU KIVEi TOV INAVTA;

APPROACH We assume that the hopper 1s at rest so © = (), and that the hopper
has just begun dropping gravel so dM/dt = 75.0kg/s.

SOLUTION (&) The bell needs to move at a constant speed {dv/dt = 0), so

Eq. 9-19 as written for one dimension, gives:

— dv adM
Fext = Mri‘t (“ L]rit
dM
= 00— {0 - p)—
[ L}d:‘
= v% = (220m/s){75.0kg/s) = 165N,
f

(b) This force does work at the rate (Eq. §-21)

di el dt
= 363 W,

which 1s the power output required of the motor,



—

g ; //////iiiiiiiiiig?

MNOTE This work does not all go into kinetic energy ol the gravel, since

— 2

= ——n .

2 dt

2

dKk  d (1 1}3) 1 dM
dt di

which is only half the work done by F_,. The other half of the external work
done goes into thermal energy produced by friction between the gravel and the
belt (the same friction force that accelerates the gravel),
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Alaotraocn Mopiwv-Xnuikn Auvauiki
Alatopika Mopia

evépyela E, poipaderal HETASU TWV ATOMIKWV
OpauopdaTtwy Ye Baon Tnv apxn diatnpnon TnNG

V
OTav o1rdcl Eva dIATOMIKO HOPIO, N OIAOECIUN f A
EVEPYEING KOI TG OPMNAG: :

Ve

AB > A+ B
mA§A+mB§B=O
1

E, = EmAh_jAlz T EmB|73|2
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1 1

_> M4y
E,=-my|v,|* +5mp

2 B
2 2 mpg f

1 _ m m,+m
=EmA|vA|2(1+_A)=KEA 1o :

mp mp

Vg
mB mA
KEA — WEa KXl KEB — ﬁEa

O1moU M = my, + meg
KE,: KIVNTIKN EVEPYEIA TOU A
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AUO aKPOIEG TTEPITITWOEIG

m, =Mg

<l

J VA

KE, =8 :
M

KE, = KE, =%
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H evépyeia Tou deopou tou |, gival D,=1,54eV (1eV=1,6x101°J) Méon egival n
KIVNTIKA EVEPYEIA KOl I OTTOUd TWV ATONWY TOU 1Wdiou €AV TO HOPIO TOU 1Wdiou
OieyepOei pe aktTivoBoAia evépyeiag E=4,00 eV. (m ;=127 amu)

m, =m, = KE, :%: E_ZDO

_ 4,00-1,54

KE, eV =123eV

KE, =1,23eV =1,97x107]
m, =127 =127x1,66x107°"kg = 2,11x107*°kg

L _ |2KE, _ 2x1,97x10™°J
| m, 211x10%°kg

=137x10°m/s
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H evépyeia Tou deopou Ttou HI givar D,=3,05eV (1eV=1,6x101°J) TMoéon €ival n
KIVNTIKA EVEPYEIO KOI N OTTOUd TWV ATONWY TOU UBPOYOVOU Kal TOU 1Wdiou edv
TO HOpIo TOU IWdiou dieyepOei pe akTivoBoAia evépyelag E=6,00 eV. (m=127 amu,

m,=1amu )
KE,=— ™ _(E-D,)= 12—7(6,00—3,05)><1,6><10‘19J
m, +m, 128
=4,68x107"°J
KE, =™ _(E_D )= i(6,00—3,05)x1,6><10—19J
m, +m, 128

=3,69x107°'] ~0,04x107°]
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L, |2KE, _ 2x3,69x107J
"V m | 211x10%kg

=18x10°m/s

. _ |2KE, _ 2x4,68x107°J
"V m | 166x10%kg

=237x10°m/s



Alaotraocn Mopiwv-Xnuikn Auvauiki
EocwTtepIkn evépyela BpauouaTwyv-INoAuaTouika

[V

2TNV OPIOHEVEG TTEPITITWOEIG OKOMO KOl YyIO ATOMO, TO
«0pavouaTa» HMTTOPEI va €XOuv TrEPAV TNG KIVNTIKAG
EVEPYEIOG KOI ECWTEPIKN EVEPYEIA, NAEKTPOVIKE, OSOVNTIKN
KOl TTEPIOTPOPIKN. ZTNV TIEPITITWON TTOU £XOUME OUO
Opavopara (dUo Trpoidvra) o1 oxéoelg TTou Oceiaue _
IOXUOUV HE TNV HOVN dla@opd OTI OTOV UTTOAOYIOHO TNG VB
O1a0éociung evépyeiag (Ea) agaipoupe TNV €0WTEPIKN
evepyeia (EE).

E. = KE, + KE, — EE, —EE,
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H evépyeia Tou deopou Tou CH;Br givan D,=2,97eV (1eV=1,6x109J). AigyeipeTal
ME akTivoBoAia evépyeiag E=5,45 eV kal omrdel o peBUAIo Kai Bpwpio. Edv n
EOWTEPIKNA EVEPYEIA TIG pifag TOUu pEBUAiou TTou TTapdayeTal €xel 0,75eV eowWTEPIKNA
evEpyela, BPEITE TIG TAXUTNTEG TWV BpaucpdaTtwyv. (Mg,=80 amu, m ;=1 amu, m =12

amu) CH,Br —CH, +Br
mCH3
KE,, = (E-D,-0,75V )
Meyq + M, o _ [2KEq _ \/ 2x0,44x107°]
"\ mg,  |80x166x107%"k
__b (5,45-2,97-0,75)x1,6 %10 § )
15+80 =8,14x10°m/s
=0,44x107°J
KE ,=— " (E_D_—0,75%V)
Meyy s + My, y 2KE,,., \/ 2x2,33x107°)
3T m 15%1,66x1072"k
= 99(5,45-2,97-0,75)x16x10™3 o ’
5 =4,33x10°m/s

=2,33x107™J
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Mia xprjoiun ox€on yia yprjyopo UTToAoyIoHO TaxUuTnTog TV BpaucuaTwy

Eav xpnoiyoTtroleioTe JOVADES o
T =1,02L /—
2E

Mnkog : cm
Evépyela: eV
Mada: amu Y = — \/E cm/us
XpOVoC: US 1,02y m’
m=28 amu
_ 1 1—0262 cm_2620m
E=1eV, Tz 28 T us T s
1 2 0.1 cm m
E=0.1¢€V, V= = 0.0829 — = 829 —
1’02V 28 Us S
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