

Βιοχημεία Ι

Κεφάλαιο 13

Μεμβρανικοί δίαυλοι και αντλίες

Η διαπερατότητα της λιπιδικής διπλοστιβάδας οφείλεται σε τρεις κατηγορίες μεμβρανικών πρωτεϊνών:

- αντλίες (pumps)
- φορείς (carriers)
- δίαυλοι (channels)

13.0 Μεμβρανικές πρωτεΐνες

Αντλίες

- Πηγή ενέργειας, η υδρόλυση του ΑΤΡ ή η απορρόφηση τους φωτός
- Θερμοδυναμικά μη επιτρεπτή μεταφορά («ανοδική») ιόντων και μορίων
- Ενεργός μεταφορά

Φορείς

- Χωρίς την κατανάλωση ΑΤΡ
- Χρησιμοποιούν την βαθμίδωση
 της συγκέντρωσης ενός ιόντος
 για να ωθήσουν την μεταφορά
 ενός άλλου μορίου ενάντια στην
 βαθμίδωση της συγκέντρωσης
 του
- Δευτερογενής ενεργός μεταφορά

Δίαυλοι

- Χωρίς την κατανάλωση ΑΤΡ
- Μεμβανικός πόρος
- Θερμοδυναμικά επιτρεπτή κατεύθυνση («καθοδική»)
- Παθητική μεταφορά

13.1 Η μεταφορά μορίων διαμέσου μια μεμβράνης μπορεί να είναι ενεργός ή παθητική

Πολλά μόρια χρειάζονται πρωτεϊνικούς μεταφορείς για να διαπεράσουν τις μεμβράνες

απλή διάχυση: Λιπόφιλα μόρια (π.χ. στεροειδείς ορμόνες) μπορούν να μετακινηθούν διάμεσου της κυτταρικής μεμβράνης
 Τί είναι αυτό που καθορίζει την κατεύθυνση προς την οποία θα κινηθούν;

• διευκολυνόμενη διάχυση (παθητική μεταφορά): Η διάχυση διαμέσου της μεμβράνης διευκολύνεται από κάποιο δίαυλο

Το ιόντα του Να⁺ στο εξωτερικό του κυττάρου βρίσκονται συγκέντρωση 143 mM ενώ στο εσωτερικό 14 mM Εισέρχεται στο κύτταρο;

13.1 Η μεταφορά μορίων διαμέσου μια μεμβράνης μπορεί να είναι ενεργός ή παθητική

Πολλά μόρια χρειάζονται πρωτεϊνικούς μεταφορείς για να διαπεράσουν τις μεμβράνες

Πως επιτεύχθηκε αρχικά αυτή η βαθμίδωση συγκέντρωσης του Να⁺

Κάπως πρέπει να μετακινήθηκε ή αντλήθηκε ενάντια στην βαθμίδωση της συγκέντρωσης του

 ενεργός μεταφορά: Οι πρωτεϊνικοί μεταφορείς είναι ικανοί να χρησιμοποιήσουν μια πηγή ενέργειας για να μετακινήσουν ένα μόριο ενάντια στη βαθμίδωση της συγκέντρωσης του

13.1 Η μεταφορά μορίων διαμέσου μια μεμβράνης μπορεί να είναι ενεργός ή παθητική

Η ελεύθερη ενέργεια που είναι αποθηκευμένη στις βαθμιδώσεις συγκεντρώσεων μπορεί να ποσοτικοποιηθεί

Μη φορτισμένο μόριο

 $\Delta G = RT \ln(c_2/c_1)$

Φορτισμένο μόριο

 $\Delta G = RT \ln(c_2/c_1) + ZF\Delta V$

Ζ: το ηλεκτρικό φορτίο του μορίου F: σταθερά Faraday ΔV: το μεμβρανικό δυναμικό Μεταφορά αφόρτιστου μορίου από C₁ σε C₂ Μεταφορά φορτισμένου μορίου στην πλευρά μεμβράνης που έχει το ίδιο φορτίο

13.2 Δύο οικογένειες μεμβρανικών πρωτεϊνών χρησιμοποιούν την υδρόλυση της ΑΤΡ για την άντληση ιόντων και μορίων διαμέσου μεμβρανών

Οι **ΑΤΡάσεις τύπου Ρ** συζευγνύουν την φωσφορυλίωση με μεταβολές στερεοδιάταξης για την άντληση ιόντων Ca²⁺

Γενικά ισχύει ότι...

Κάθε αντλία μπορεί να υπάρχει (και αλληλομετατρέπεται) σε δύο κύριες διαμορφώσεις, η μία με τις θέσεις δέσμευσης ιόντων ανοιχτές προς τη μία πλευρά της μεμβράνης και η άλλη με θέσεις δέσμευσης ιόντων ανοιχτές προς την άλλη πλευρά

13.2 Αντλίες καθοδηγούμενες από ΑΤΡ

Η δομή της αντλίας Ca²⁺ του σαρκοπλασματικού δικτύου (ΣΔ)

Παίζει ρόλο στην μυϊκή σύσπαση, ο οποία προκαλείται από μια απότομη αύξηση των κυτταροπλασματικών επιπέδων του Ca²⁺

Η μυϊκή χαλάρωση εξαρτάται από την ταχεία μετακίνηση του Ca²⁺ απο το κυτταρόπλασμα στο ΣΔ

13.2 Αντλίες καθοδηγούμενες από ΑΤΡ

Η δομή της αντλίας Ca²⁺ του ΣΔ

110 KDa

10 α-έλικες (διαμεμβρανική επικράτεια)

N δεσμεύει το ΑΤΡ

Ρ δέχεται την φωσφορική ομάδα

Α δρα ως ενεργοποιητής, επικοινωνεί τις αλλαγές της Ν και Ρ στην διαμεμβρανική επικράτεια

Asp 351 δέχεται την φωσφορική ομάδα

Η δομή της αντλίας Ca²⁺ και μεταβολές της στερεοδιάταξης

13.2

13.2 Αντλίες καθοδηγούμενες από ΑΤΡ

Μηχανισμός άντλησης Ca²⁺ από την ΑΤΡάση Ca²⁺ ΣΔ

- 1. δέσμευση του Ca²⁺ από το κυτταρόπλασμα
- 2. δέσμευση της ΑΤΡ
- υδρόλυση της ΑΤΡ με μεταφορά φωσφορικής ομάδας στο Asp 351 του ενζύμου
- απελευθέρωση της ADP και εκστροφή του ενζύμου για να απελευθερώσει Ca²⁺ στην αντίθετη πλευρά της μεμβράνης
- 5. υδρόλυση του φωσφοασπαραγινικού
- 6. εκστροφή του ενζύμου για νέο κύκλο

13.2 Αντλίες καθοδηγούμενες από ΑΤΡ

Μεταφορείς ABC: Οικογένεια μεμβρανικών πρωτεϊνών με δομικές περιοχές κασέτας δέσμευσης της ATP (ATP-binding cassettes)

13.2

Η δομή του μεταφορέα ΑΒΟ

13.2 Αντλίες καθοδηγούμενες από ΑΤΡ

Ο μηχανισμός δράσης του μεταφορέα ABC

- άνοιγμα του διαύλου προς το εσωτερικό του κυττάρου
- δέσμευση του υποστρώματος και μεταβολές της στερεοδιάταξης στις κασέτες της ATP
- δέσμευση της ATP και άνοιγμα του διαύλου στην άλλη πλευρά της μεμβράνης
- απελευθέρωση του υποστρώματος στο εξωτερικό του κυττάρου
- 5. υδρόλυση της ATP και επαναφορά του μεταφορέα στην αρχική κατάσταση

13.3 Η διαπέραση της λακτόζης είναι ένα αρχέτυπο δευτερογενών μεταφορέων οι οποίοι χρησιμοποιούν μια βαθμίδωση συγκέντρωσης για να ενεργοποιήσουν τον σχηματισμό μιας άλλης

Σύζευξη της θερμοδυναμικά μη ευνοϊκής ανοδική ροή ενός ιόντος ή μορίου με την θερμοδυναμικά ευνοϊκή καθοδική ροή ενός διαφορετικού ιόντος ή μορίου Μεταφορά ενός ιόντος ή μορίου προς τις δύο κατευθύνσεις, και η επιλογή εξαρτάται από τις συγκεντρώσεις του ίδιου του ιόντος ή μορίου σε κάθε πλευρά

13.3 Η διαπέραση της λακτόζης είναι ένα αρχέτυπο δευτερογενών μεταφορέων οι οποίοι χρησιμοποιούν μια βαθμίδωση συγκέντρωσης για να ενεργοποιήσουν τον σχηματισμό μιας άλλης

Η δομή της διαπεράσεις της λακτόζης (συν-κρυσταλλωμένο με ένα ανάλογο λακτόζης)

13.3 Η διαπέραση της λακτόζης είναι ένα αρχέτυπο δευτερογενών μεταφορέων οι οποίοι χρησιμοποιούν μια βαθμίδωση συγκέντρωσης για να ενεργοποιήσουν τον σχηματισμό μιας άλλης

Ο μηχανισμός δράσης της διαπεράσεις της λακτόζης (ένας συμμεταφορέας)

Η δομή ενός διαύλου καλίου είναι αρχέτυπο για πολλές δομές ιοντικών διαύλων

Ο δίαυλος Να⁺ απομονώθηκε για πρώτη φορά από το ηλεκτροφόρο χέλι

Βάση της ικανότητάς του να δεσμεύει

Που απομονώθηκε από τα φουσκόψαρα

10 ng: Τόσο χρειάζεται για να γίνει το μοιραίο...

Σχέσεις των αλληλουχιών των ιοντικών διαύλων

- 4 επαναλαμβανόμενες μονάδες
- Κάθε επανάληψη σχηματίζει 6 μεμβρανικές αλυσίδες
- Μεταξύ των S5 και S6 είναι ο πόρος
- Τα S4 είναι πολύ θετικά τμήματα καθώς περιέχουν Arg ή
 Lys αισθητήρες δυναμικού του διαύλου

Η δομή του ιοντικού διαύλου του καλίου

Το φίλτρο επιλογής του ιοντικού διαύλου καλίου

Πως απορρίπτεται το Να⁺; Αφού είναι αρκετό μικρό ώστε να περάσει.

Ióv	Ιοντική aκtiva (Å)	Ελεύθερη ενέργεια ενυδάτωσης kcal mol ⁻¹ (kJ mol ⁻¹)
Li*	0,60	-98 (-410)
Na ⁺	0,95	-72 (-301)
K⁺	1,33	-55 (-230)
Rb ⁺	1,48	-51 (-213)
Cs ⁺	1,69	-47 (-197)

Πως απορρίπτεται το Να+;

Φίλτρα επιλογής για τους διαύλους ασβεστίου και νατρίου

13.4

Μοντέλο ιοντικής μεταφοράς από τον δίαυλο του καλίου

Οι μεταπτώσεις από την ανοιχτή στην κλειστή κατάσταση ελέγχονται

Δυο τάξεις ιοντικών διαύλων:

- a) ελεγχόμενους από πρόσδεμα διαύλους
- b) τασεοελενγχόμενους διαύλους

Ο έλεγχος της τάσης απαιτεί ουσιώδες μεταβολές της στεροδιάταξης ειδικών επικρατειών των ιοντικών διαύλων

Ο έλεγχος της τάσης απαιτεί ουσιώδες μεταβολές της στεροδιάταξης ειδικών επικρατειών των ιοντικών διαύλων

Ο υποδοχέας της ακετυλοχολίνης είναι ο καλύτερα κατανοητός δίαυλος ελεγχόμενος από πρόσδεμα (ακετυλοχολίνη, ένας νευροδιαβιβαστής)

Ανοίγει ένα είδος κατιονικού διαύλου εξ ίσου διαπερατός από τα Να⁺ και Κ⁺

13.4

Η δομή του υποδοχέα της ακετυλοχολίνης

Το άνοιγμα του υποδοχέα της ακετυλοχολίνης

Υπομονάδα *α* (ανοικτή μορφή)

Άσκηση 1

Επωάζω την ΑΤΡάση Ca2+ ΣΔ με [γ-³²P]ΑΤΡ (περιέχει ραδιενεργό ³²P στην τελευταία φωσφορική ομάδα) στους 0°C για 20 δευτερόλεπτα και μετά τρέχω το δείγμα μου σε πηκτή με ηλεκτροφόρηση.

Παρατηρώ μια ραδιοσημασμένη ζώνη που αντιστοιχεί σε μοριακό βάρος της πρωτεΐνης.

- 1. Γιατί το βλέπω αυτό;
- 2. Θα περιμέναμε να δούμε μια αντίστοιχη ραδιοσημασμένη ζώνη αν κάναμε το ίδιο πείραμα με μια MDR πρωτεΐνη;