# **Basic 1D experiments**

Dr. E. Manolopoulou, NMR, Lab, Dept of Chemistry, Univ. of Crete, March 2019

#### **PRELIMINARY SET-UP**

- 1. Insert the sample to the spectrometer
- 2. Choose the right deuterated solvent with lock command
- Create a new dataset (edc) and read the standard BRUKER parameter set (rpar) to record a conventional <sup>1</sup>H spectrum with rpar PROTON all (the pulse program zg30 can be visualized in the PulsProg section or with the edcpul command).
- 4. getprsol: Get probe and solvent dependent parameters (corresponding pulses and power levels)
- 5. Tune and match the probehead (atma or atma exact )
- 6. Optimize the shim procedure (read an optimized shim file with the rsh command and perform shimming)

# ACQUISITION

7. Set the appropriate ns and ds for the experiment

8. Start acquisition by <u>rga</u> and then <u>zg</u> (the expected experimental time is displayed with the <u>expt</u> command).

#### PROCESSING

9. The recorded data is Fourier transformed with **ft** (or **ef**) and phase and baseline corrections are performed using **apk** and **absn**, respectively.



By default, the following parameters are set to:

Relaxation delay (1-5\*T1) (**d1**): 1s Number of 16 scans (ns) (**ds**) Dummy 2 scans Spectral Width (sw in 20.8 ppm) Center of spectrum (o1p in ppm):6.175 Time Domain (td in ppm) 32k

#### 1D<sup>1</sup>H NMR with water presaturation

# Step 1: PRELIMINARY SET-UP

- 1. Insert the sample to the spectrometer
- 2. Choose the right deuterated solvent with lock command
- Create a new dataset (edc) and read the standard BRUKER parameter set (rpar) to record a conventional <sup>1</sup>H spectrum with rpar PROTON all (the pulse program zg30 can be visualized in the PulsProg section or with the edcpul command).
- 4. Tune and match the probehead (atma or atma exact)
- 5. Optimize the shim procedure (read an optimized shim file with the **rsh** command and perform shimming)
- 6. Record a typical <sup>1</sup>H spectrum. Note the frequency (o1) of the solvent resonance



# **Step 2:** Put the solvent peak on-resonance by:

- expand about the solvent peak enough that you can easily see the center
- click i and then left-click with the cursor in the middle of the solvent peak
- 3. choose o1
- 4. Write down the value for o1 in Hz.





# **SPECIFIC PARAMETERS (acqupars)**

- The power level and the duration of the presaturation are defined by
- pl9 (start with 55 dB) and d1 (2s), respectively.
- minimum number of scans ns=8 ds=4
- pl9 (38-40 dB)
- Td (32k)

**Step 3:** 1. **Create a new dataset** with **edc** and change the pulse program (**pulprog zgpr**).

2. On the command line, type "*o1*" and key in the solvent frequency that you get from the previous experiment

- 3. Type *rga*
- 4. Set ns, ds
- 5. Type zg to start acquisition
- 6. Process spectrum (ef,apk,absn)

| zgpr |      |      |
|------|------|------|
| L    | <br> | <br> |
|      | <br> | <br> |

# Zgdc30

1D-sequence **with decoupling**, using a 30° flip angle. Result is a standard <sup>13</sup>C NMR spectrum with proton broad-band decoupling

#### **PRELIMINARY SET-UP**

- 1. Insert the sample.
- 2. Choose the solvent deuterium signal with the lock command.
- 3. Check shimming from <sup>1</sup>H spectra
- Create a new dataset with edc and read the standard parameter set to record a conventional <sup>13</sup>C spectra with rpar C13CPD32 all (the pulse program zgdc30 can be displayed with the command edcpul)
- 5. Update the corresponding pulses and power levels in the acquisition parameters according to the selected solvent/probehead parameters by executing the **getprosol** command
- 6. Tune and match the probehead (atma)

## ACQUISITION

7. Set the appropriate ns and ds for the experiment

8. Start acquisition by <u>rga</u> and then <u>zg</u> (the expected experimental time is displayed with the <u>expt</u> command).

## PROCESSING

9. The recorded data is Fourier transformed with **ef** and (**lb**=1) and phase and baseline corrections are performed using **apk** and **absn**, respectively.



# SPECIFIC PARAMETERS (acqupars)

By default, the following parameters are set to:

ns=32, ds=2 d1=2 sw=331.2 td=64k



# Quantitative measurements with inverse gated methodology <u>1D <sup>1</sup>H-decoupled <sup>13</sup>C spectrum</u> without NOE

#### **PRELIMINARY SET-UP**

- 1. Insert the sample.
- 2. Choose the solvent deuterium signal with the lock command.
- 3. Check shimming from <sup>1</sup>H spectra.
- Create a new dataset with edc and read the standard parameter set to record a <sup>1</sup>H-decoupled <sup>13</sup>C spectrum without NOE with rpar C13IG all (the pulse program zgig30 can be displayed with the command edcpul)
- 5. Update the corresponding pulses and power levels in the acquisition parameters according to the selected solvent/probehead parameters by executing the getprosol command
- 6. Tune and match the probehead (atma)

# ACQUISITION

7. Set the appropriate **ns** and **ds** for the experiment

8. Start acquisition by <u>rga</u> and then <u>zg</u> (the expected experimental time is displayed with the <u>expt</u> command).

#### PROCESSING

9. The recorded data is Fourier transformed with **ef** and (**lb**=1) and phase and baseline corrections are performed using **apk** and **absn**, respectively.



# SPECIFIC PARAMETERS (acqupars)

By default, the following parameters are set to: ns=16 ds=4, d1=60s sw=250

**td**=32k



# DEPT -135 <sup>13</sup>C NMR experiment Full decoupled <sup>13</sup>C spectrum

## **PRELIMINARY SET-UP**

- 1. Insert the sample.
- 2. Choose the solvent deuterium signal with the lock command.
- 3. Record a conventional <sup>1</sup>H-decoupled <sup>13</sup>C spectrum.
- Create a new dataset with edc and read the standard parameter set to record a DEPT spectrum with rpar C13DEPT135 all (the pulse program dept135 can be displayed with the command edcpul).
- 5. Update the corresponding pulses and power levels in the acquisition parameters according to the selected solvent/probehead parameters by executing the **getprosol** command
- 6. Tune and match the probehead (atma)



SPECIFIC PARAMETERS (acqupars)

By default, the following parameters are set to: ns=128, ds=2 d1=2s, d2=3.57ms

**sw**=331.2 **td**=64k



#### ACQUISITION

10. Set the appropriate **ns** and **ds** for the experiment

11. Start acquisition by <u>rga</u> and then <u>zg</u> (the expected experimental time is displayed with the <u>expt</u> command).

## PROCESSING

12. The recorded data is Fourier transformed with **ef** and (**lb**=1) and baseline correction **absn**.

# 1D <sup>31</sup>P-decoupled <sup>1</sup>H spectrum

#### PRELIMINARY SET-UP

- 1. Insert the sample in the spectrometer
- Create a new dataset with edc and read the standard parameter set to record a DEPT spectrum with rpar PROP31DEC all (the pulse program zgig30 can be displayed with the command edcpul).
- 3. Update the corresponding pulses and power levels in the acquisition parameters according to the selected solvent/probehead parameters by executing the **getprosol** command

## ACQUISITION

- 5. Set the appropriate ns and ds for the experiment
- 6. Start acquisition by <u>rga</u> and then <u>zg</u> (the expected experimental time is displayed with the <u>expt</u> command).

#### PROCESSING

7. The recorded data is Fourier transformed with **ef** , phase and baseline corrections are performed using **apk** and **absn**, respectively.









# SPECIFIC PARAMETERS (acqupars)

By default, the following parameters are set to: ns=16 ds=2, d1=1s Sw (ppm) =150 td=32k o1p (ppm)= 6.175, o2p= center of the <sup>31</sup>P spectrum

#### **Selective 1D Experiment: NOE**

#### **PRELIMINARY SET-UP**

- 1. Run a 1D Proton spectrum
- 2. Process with efp, apk.
- 3. Identify your target for your 1D NOESY
- 4. Define your regions:
  - a. Under Process tab, hit the Integration button.
  - b. Delete all integrals if any are present
- c. With the integration cursor enabled , click and drag over your peak to define the region.

d. Hit save as, save to region, then save and close



5. Create a new dataset with edc and read the standard parameter set to record a 1D NOESY spectrum with rpar SELNOGP

6. Update the corresponding pulses and power levels in the acquisition parameters according to the selected solvent/probehead parameters by executing the **getprosol** command

# ACQUISITION

- 7. Set the appropriate **ns** and **ds** for the experiment
- 8. In the sel1d message window, click **OK to start the acquisition**

# PROCESSING

9. The recorded data is Fourier transformed with **ef** and phase and baseline corrections are performed using **apk** and **absn**, respectively.



selnoap



# **SPECIFIC PARAMETERS (acqupars)**

By default, the following parameters are set to:

**ns**= 32, 64, 128 **ds**=?

I

d1 =3s, d8 (NOESY mixing time)= 0.1-0.8s (for large molecules to small ones)

**sw**=?

**td**=?

1D Select

SELNOG Dataset o

total expe

OK: starts CANCEL:

# 1D NOESY

| SILIOIT                                | 1 Proton_exp 3 1 C/Data/AVE                                                                                                      |         |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| s by                                   | Spectrum  ProcPars  AcquPars  Title  PulseProg  Peaks  Integrals  Sample  Structure  Plot  Fid  Acqu    2  1-D Proton experiment |         |  |  |
| -                                      | 30 mg Menthyl Anthranilate in DMSO-d6<br>1D Selective Gradient NOESY<br>fleq: 4.7994 ppm                                         |         |  |  |
| ve Gradient NOESY:                     |                                                                                                                                  |         |  |  |
| reated in expno 2.                     |                                                                                                                                  |         |  |  |
| riment time will be 4 min 25 sec       | 8                                                                                                                                | hr all  |  |  |
| acquisition<br>creates data sets only. |                                                                                                                                  |         |  |  |
|                                        | 8                                                                                                                                |         |  |  |
| OK Cancel                              |                                                                                                                                  |         |  |  |
| seline                                 |                                                                                                                                  | 2 [ppm] |  |  |

# Bibliography

1D and 2D Experiments Step-by-Step Tutorial. Basic Experiments User Guide (Version 004) Bruker

https://pharm.ucsf.edu/sites/pharm.ucsf.edu/files/AVANCE%20Beginner%27s%20Guide.pdf

TopSpin Guide Book. Basic NMR Experiments User Manual (Version 002) Bruker

https://www.nmr.ucdavis.edu/sites/g/files/dgvnsk4156/files/inline-files/iconnmr userguide-ucdavis chem.pdf

1D and 2D Experiments Step-by-Step Tutorial Advanced Experiments User Guide (Version 002) Bruker

http://triton.iqfr.csic.es/guide/tutorials/multnuc/h1decp31.html