Self assembly




Shape in eukaryotic cells
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Figure 14.1 Molecular Biology of Assemblies and Machines (© Garland Science 2016)
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Filaments and microtubules within the cell

ACTIN FILAMENTS MICROTUBULES
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Eukaryotic
Protein:

Prokaryotic
Protein:

Caulobacter

Localization:

Caulobacter
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Tubulin interacting proteins

TABLE 7.2 Proteins that interact with
tubulin/microtubules

v-TURC Initiates filament
formation

MAP, XMAP215 Stabilizes
filaments

Tau, MAP-2 Cross-links
filaments in
parallel rows

Stathmin, kinesin Cuts or

13, katanin depolymerizes
filaments
+TIP, plectin Links filament to

other proteins

Table 7.2 How Proteins Work (©2012 Garland Science)



Fiber growth
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kinesins and dyneins
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Drugs

Table 16-2 Drugs That Affect Actin Filaments and Microtubules

Phalloidin binds and stabilizes filaments

Cytochalasin caps filament plus ends

Swinholide severs filaments

Latrunculin binds subunits and prevents their polymerization
 MICROTUBULESPECIFICDRUGS

Taxol binds and stabilizes microtubules

Colchicine, colcemid binds subunits and prevents their polymerization

Vinblastine, vincristine  binds subunits and prevents their polymerization
Nocodazole binds subunits and prevents their polymerization



3 Virus Structure

* Size: 17 nm - 3000 nm diameter
Basic shape : Rod-like, “Spherical”
Protective Shell — Capsid

» Made of many identical protein subunits
3 » Symmetrically organized 50% of weight
| » Enveloped or non-enveloped
9 » Packaging and protecting nucleic acid
» Host cell recognition
» Protein on coat or envelope “feels” or “recognizes” host
cell receptors
: Q) » Genomic material delivery
> ] > Enveloped: cell fusion event
(a) Satellite Tobacco l ‘ P :
Neemss Vs o » Non-enveloped: more complex strategies & specialized
structures
L.{?i::i} = A
(b) Picornavirus /N E X \
T =\ * Genomic material
X X — DNA or RNA
(d) T-even [ | — Single- or double-stranded
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Figure 8.4 Molecular Biology of Assemblies and Machines (© Garland Science 2016)
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recognition

Nature Reviews Immuno

logy volume 20, pages 3
63-374 (2020)

Airway ASC oligomer  Host DNA
w4
ira »
@1 " S% release
mv . .
ACE2 LOATP

SMemamam

| T™PRss2 '
\

\WWAVAVAN
Virus
replication Virus
l maturation

\N\N\NN\ —> ..
Viral RNA Viral
proteins

Pyroptosis

/< N ) Alveolar
Endothelial A7/ Q -1 macrophage
layer
Leakage caused by vascular permeability
FCN1*
macrophage o o o e Monocyte
B N © © Cytokine storm
° o (16, IP-10, IFNy,
o o © IL-2,1L-10, G-CSF,
% o e 7 o o MIP1o, TNF)
o » = S SRS

Dysfunctional immune response

¢ Excessive infiltration of monocytes, macrophages and T cells
¢ Systemic cytokine storm

¢ Pulmonary oedema and pneumonia

* Widespread inflammation and multi-organ damage

Epithelial

Non-neutralizing

@ @
N P t

f:estljg;eck Tcell ‘ ) Monocyte
V. S >

Macrophage

Neutralizing
/:1[;/52:3;13 es JL antibody binds
clearuF:a g and inactivates
neutralized virus virus

Alveolar
macrophages
recognize and
phagocytose

apoptotic cell

antibody may
cause ADE of
infection

CD4*Tcell
mediates efficient
immune response

CD8' T cell )e
recognizes
and eliminates

infected cells

7;"‘

Healthy immune response
¢ Infected cells rapidly cleared

* Virus inactivated by neutralizing antibodies
* Minimal inflammation and lung damage



https://www.nature.com/nri
https://www.nature.com/nri

The structure of the trimeric spike
protein of SARS-CoV-2.

Nature Reviews Immunology :
volume 20, pages 363—374 (2020)

_________________________________
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Potential therapeutic approaches

@

Antibodies to spike resulting
from vaccination or adoptive
transfer block virus binding
to ACE2

@

Pro-inflammatory
cytokines

TMPRSSZ

Mechanical filtration

/‘@OOOOOD\

Pro-inflammatory cytokines
can be neutralized through O O
transfer of blocking antibodies,
or through mechanical removal
from the blood

©

Virus-specific effector
CD8' T cells arising from
vaccinations recognize
infected cells, secreting
cytotoxic granules to kill
infected cells

Protease inhibitor blocks
and prevents TMPRSS2 from
activating the spike protein
through protease cleavage




SARS-CoV spike protein (316-510)
SARS-CoV-2 spike protein (338-533)

SARS-CoV spike protein (316-510)
SARS-CoV-2 spike protein (338-533)

SARS-CoV spike protein (316-510)
SARS-CoV-2 spike protein (338-533)

SARS-CoV spike protein (316-510)
SARS-CoV-? spike protein (338-533)

316
338

366
366

416
438

466
488

FPNITNLCPFGEVEFNATRFRSVYAWERKKISHCVADYSVLYNSTEFSTEE 365
FPNITNLCPFGEVEFNATRFASVYA RISNCVADYSVILYNSASESTEE 387

CYGVSPTELNDLCEFTNVYADSEVIRGDEVROIAPGOTGRIADYNYKLEPDD 437

GCVLAWNT
GCVIAWNS

CYGV SgTKLHDLC FENVYADS F‘JV'KGDDVRQIAPGQTGEIADYNYKLPDD 415

465
4587

PYRVVVLSFELLNAPATV 510
PYRVVVLSFELLHAPATYV 533

Nature Reviews Immunology volume 20, pages 363—

374 (2020)


https://www.nature.com/nri

Capsids
Evolutionary pressure to make larger capsid

— Using larger subunits helps very little
— Using more subunits helps a lot

Not possible to form icosahedral shell (of identical units in identical
environments) with more than 60 subunits

Viruses with more than 60 subunits were observed

)

In 1962, Caspar & Klug proposed the theory of “quasi-equivalence’

— Not all protein subunits are equivalent
* “Ildentical” subunits in slightly different environments

— Only certain numbers of subunits will can be packed into closed regular
lattice.



lcosahedral Symmetry

In 1953, Crick & Watson proposed principles
of virus structure

Key insight:
Limited volume of virion capsid => nucleic

acid sufficient to code for only a few sorts of
proteins of limited size

Conclusion:
Identical subunits in identical environments
Icosahedral, dodecahedral symmetry

In 50’s & 60’s Klug and others confirmed that
several (unrelated) “spherical” viruses had
icosahedral symmetry

— (Used negative staining & electron ‘ﬁ .
microscopy) b

*  Conclusion:

— Icosahedral symmetry is preferred
in virus structure




lcosahedral Symmetry

12 vertices
20 faces (equilateral triangles)
5-3-2 symmetry axes

60 identical™* subunits
in identical environments
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* asymmetric
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Figure 8.6 Molecular Biology of Assemblies and Machines (© Garland Science 2016)



X-ray Crystallography of Viruses

* Symmetry of protein shells makes them uniquely
well-suited to crystallographic methods

* Viruses are the largest assemblies of biological
macromolecules whose structures have been
determined at high resolution
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Quasi-equivalence

* Subunits are in “minimally”
different environments

— Pentamers at vertices
— Hexamers elsewhere

Predicts packing arrangements of
larger capsids

— Shift from T1 to T4 packing
=> 8-fold increase in volume




Spherical viruses have icosahedral sylmmmetry

Goldberg diagram



CPV T=1286 A L-A T=1 440 A MS2 T=3 288 A Norwalk T=3 400 A HRV14 P=3 322 A Hep-B T=4 332 A
Picorna PDB 2CAS BTV PDB 1M1C FPDB 2M52 Picorna PDB 11HM Picormna PDE 4BHY PDB 10GT

ChikV T=4 672 A NWV T=4 432 A SV40 T=7d 494 A HK87 T=71 660 A Ba Micro T=9 414 A BTV T=13 705 A
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interactions between complementary surface
patches




Helical viruses

tobacco mosaic virus (TMV
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Figure 8.15 Molecular Biology of Assemblies and Machines (© Garland Science 2016)



Helical viruses
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Figure 8.16 Molecular Biology of Assemblies and Machines (© Garland Science 2016)



Disassembly of TMV
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Figure 8.17 Molecular Biology of Assemblies and Machines (© Garland Science 2016)
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Assembly of TMV
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Figure 8.18d Molecular Biology of Assemblies and Machines (© Garland Science 2016)



hepatitis B virus life cycle
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small Icosahedral viruses . s
hepatitis B virus

(A) 2.1 kb RNA
2.4 kb RNA core protein

(B)
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Figure 8.26 Molecular Biology of Assemblies and Machines (© Garland Science 2016)



Figure 1. CryoEM and 3D reconstruction of hepatitis B virus (HBV) core assembled from full-length HBV
core proteins at 3.5A resolution.

n s a.{s,i-:;
Spatial frequency A1

Yu X, Jin L, Jih J, Shih C, Hong Zhou Z (2013) 3.5A cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein.
PLOS ONE 8(9): €69729. https://doi.org/10.1371/journal.pone.0069729


https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729

Figure 2. Comparisons between corresponding cryoEM structures (green) and crystal structures (red) by
superimposition.

Yu X, Jin L, Jih J, Shih C, Hong Zhou Z (2013) 3.5A cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein.
PLOS ONE 8(9): €69729. https://doi.org/10.1371/journal.pone.0069729


https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729

Figure 4. Maps of HBV core reconstruction filtered to 10A resolution.

Yu X, Jin L, Jih J, Shih C, Hong Zhou Z (2013) 3.5A cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein.
PLOS ONE 8(9): €69729. https://doi.org/10.1371/journal.pone.0069729


https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729
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Figure 8.28 Molecular Biology of Assemblies and
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assembly and maturation of human
immunodeficiency virus (HIV)
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Influenza virus

membrane
M1 matrix
protein
I | |
50 nm 10 nm
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Figure 8.60a Molecular Biology of Assemblies and Machines (© Garland Science 2016)
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Figure 8.60d Molecular Biology of Assemblies and Machines (© Garland Science 2016)



Display of proteins on accessory
proteins of dsDNA bacteriophages
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Display of proteins on accessory
proteins of dsDNA bacteriophages
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Figure 8.67 Molecular Biology of Assemblies and Machines (© Garland Science 2016)



Display of an Ig domain
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Figure 8.68 Molecular Biology of Assemblies and Machines (© Garland Science 2016)



Display of green fluorescent protein
at the tips of HBV capiikes
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Figure 8.69 Molecular Biology of Assemblies and Machines (© Garland Science 2016)



Generation of protective
vaccines

Figure 8.70a Molecular Biology of Assemblies and Machines (© Garland Science 2016) 20 nm

Figure 8.70b Molecular Biology of Assemblies and Machines (© Garland Science 2016)



Figure 8.71 Molecular Biology of Assemblies and Machines (© Garland Science 2016)
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