Multienzyme Complexes: Catalytic Nanomachines

Beyond the catalytic face, enzymes have two additional faces:
regulatory and social.

The regulatory site binds a ligand that modifies the rate and
specificity of the enzymes.

The social face associates the enzyme with other components,
such as a membrane or a scaffold, or complexes with other
enzymes.
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Interactome connectivity of EcoCyc PPIls and proposed bacterial AP-MS interactomes.
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Cell extracts for the structural characterization and identification of
molecular species
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Image processing steps to reconstruct electron optical
densities from native cell extracts.
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M. smegmatis
Native purification
106 884 particles

7.5 A resolution
(FSC=0.5)

2.45 A pixel size

EMD-2238

M. tuberculosis
Recombinant
40 160 particles

3.3 A resolution
(FSC =0.1.43)

1.05 A pixel size
EMD-0011

S. cerevisiae
Native purification

~25 000 particles

5.9 A resolution
(FSC =0.143)

1.14 A pixel size
EMD-1623

C. thermophilum
Cell extract
3933 particles

4.7 A resolution
(FSC =0.143)

2.16 A pixel size
EMD-3757
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How do molecular modules act in concert to generate
complex cellular functions?
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Structure of the yeast 60S ribosomal subunit
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The Nobel Prize in Chemistry 2009 was awarded jointly to Venkatraman Ramakrishnan, Thomas
A. Steitz and Ada E. Yonath "for studies of the structure and function of the ribosome."
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TABLE 9.2 The constituents of yeast RNA polymerase Il

Number of
components

Pol Il 12 Polymerase

TFIIA 2 Stabilizes TBP and TFIID binding. Blocks transcription inhibitors. Positive and negative gene
regulation

TFIIB 1 Binds TBP, Pol Il, and DNA. Helps determine start site

TFIIDTBP 1 Binds TATA element and bends DNA. Platform for assembly of TFIIB, TFIIA, and TAFs

TFIID TAFs 14 Binds INR and DPE promoters. Target of regulatory factors

Mediator 24 Binds cooperatively with Pol Il. Kinase and acetyltransferase activity. Stimulate basal and activated

transcription
TFIIF 3 Binds Pol Il and is involved in Pol Il recruitment to PIC and in open complex formation

TFIIE 2 Binds promoter near transcription start. May help open or stabilize the transcription bubble in the
open complex

TFIIH 10 Transcription and DNA repair. Kinase and two helicase activities. Essential for open complex
formation

SAGA TAFs 5 Unknown

SAGA Spts, Adas, Sgfs 9 Structural. Interact with TBP, TFIIA, and Gen5

SAGA Gcen5 1 Histone acetyltransferase

SAGATral 1 Large activator protein. Part of the NuA4 HAT complex

SAGA Ubp8 1 Ubiquitin protease

Table 9.2 How Proteins Work (©2012 Garland Science)
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DNA-bound PolD-PCNA processive complex

channel

DNA

Nature Communications volume 11, Article number: 1109 (2020)


https://www.nature.com/ncomms
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human metabolic pathways
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Figure 9.13 How Proteins Work (92012 Garland Science)
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Multienzyme Complexes: Catalytic Nanomachines
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enzyme complexes with tunnels
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enzyme complexes with tunnels
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Structure and mechanism of tryptophan
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Figure 9.2b Molecular Biology of Assemblies and Machines (© Garland Science 2016)
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ammonia as intermediate
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structure and mechanism of CPS
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pyruvate dehydrogenase complex
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Pyruvate Dehydrogenase Deficiency
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peripheral subunit binding domain
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E2 polypeptide chain in E. coli
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Active-site coupling

(a) simple expectation (b) actual result
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Figure 10.15 How Proteins Work (©2012 Garland Science)
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Mechanism on E3
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a-ketoglutarate dehydrogenase

Glucose

Pyruvate

CoASH  COy

CHEC \ jCHQC
xy \
CHy-C- .;3 GHQC?’

O NAD*  NADH SCoA
oxoglutarate SLICCINY|
CoA

ketoglutarate (KG), serve as a signaling hub that regulates multiple
cellular processes:

1)
2)
3)

4)
5)

6)
7)
8)

is the rate-limiting step of the TCA cycle,

is sensitive to reactive oxygen species (ROS) and produces ROS
determines whether KG is used for energy or synthesis of
compounds to support growth

regulates the cellular responses to hypoxia

controls the post-translational modification of hundreds of cell
proteins in the mitochondria, cytosol, and nucleus through
succinylation

controls critical aspects of transcription

modulates protein signaling within cells

modulates cellular calcium.



a-ketoglutarate dehydrogenase
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;: FAD NADH + H*

4
— ATP
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Its E1 and E2 domains are homologous with those of PDH,
E3 domain (which regenerates E2 and therefore does not interact directly with the ketoacid) is

identical;
the structure of each OGDHc subunit has been solved, the architecture of the intact complex and
inter-subunit interactions still remain unknown
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glycine decarboxylase

H, lipoylated H-protein

P, PLP-dependent glycine
decarboxylase;

T, a tetrahydrofolate-
dependent transferase;

SHMT, a PLP-dependent serine
hydroxymethyl transferase
H4FGlun, 5,6,7,8-
tetrahydrofolate
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Figure 9.9 Molecular Biology of Assemblies and Machines (© Garland Science 2016)



glycine decarboxylase

(B) protein H oxidized
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Structure of Pl 1protein of the glycine cleavage system: implications for nonketotic hyperglycinemia
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Structure of Pl 1protein of the glycine cleavage system: implications for nonketotic hyperglycinemia
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BC, biotin carboxylase; BCCP, biotin carboxy carrier protein;
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fatty acid synthases
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Structure of ACP and
the interaction with KS

(B) o]
g 7
,>—C—CH2—C\,1
malonyl-ACP o
}~>CO2
o}
B o N I :
| H,c— C— s el
0 0
N
B35 —c—an, | mecls —o—

ﬁ\—(g-’s—@

0 0
I I

H,C— C—CH,—C

acetoacetyl-ACP
Figure 9.18 Molecular Biology of Assemblies and Machines (© Garland Science 2016)



Determination of fatty acyl chain length
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Fatty acid
degradation

There are four ACDs that differ in their
specificity for the length of the acyl group

ACD, FAD-dependent fatty acyl-
CoA dehydrogenase

ECH, enoyl-CoA hydratase
HACD, NAD.-dependent
hydroxyacyl-CoA dehydrogenase
KACT, ketoacyl-CoA thiolase.

R-COOH + ATP + CoA-SH — R-CO-S-CoA + AMP + PP;
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FAO complex e o HACD .
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HACD, NAD.-dependent
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In animals, the FAO complex is
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in bacteria it is an o2p:heterotetramer.
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Substrate channeling in FAO complex
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polyketide synthases
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STARTER AND EXTENDER UNITS
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non-ribosomal peptide synthases

Nonribosomal peptide synthetases (NRPSs) are large multimodular biocatalysts that utilize
complex regiospecific and stereospecific reactions to assemble structurally and functionally
diverse peptides that have important medicinal applications.

During this ribosome-independent peptide synthesis, catalytic domains of NRPS select, activate
or modify the covalently tethered reaction intermediates to control the iterative chain
elongation process and product release.



non-ribosomal peptide synthases
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