Protein Interactions in vivo

In a chemical reaction which is fast enough

An enzyme rate depends on how fast substrate can diffuse into the active site, and how fast the product can diffuse out.

This rate is proportional to the diffusional collision rate, which in turn depends on the size of the molecules and on the viscosity of the medium

$$mv^2/2 = kT/2,$$

 $V = (kT/m)^{1/2}$.

In one direction

collision rate

k_{cat}/K_M is an apparent second order rate constant

 $v=k_{cat}/K_{M}[E]_{0}[S]$

*K*cat is the catalytic constant for the conversion of substrate into product Km is the Michaelis constant

k_{cat}/K_M is the specificity constant. It is used to distinguish and describe various substrates.

TABLE 4.1 Values of k _{cat} /K _m for some enzymes				
Enzyme	Substrate	<i>k</i> _{cat} / <i>K</i> _m (М ⁻¹ s ⁻¹)		
Acetylcholinesterase	Acetylcholine	1.5×10^{8}		
Carbonic anhydrase	Carbon dioxide	8.3×10^{7}		
Catalase	Hydrogen peroxide	4.0×10^{8}		
Fumarase	Fumarate	1.6×10^{8}		
Fumarase	Malate	3.6×10^{7}		
Superoxide dismutase	Superoxide	2.8×10^{9}		
Triosephosphate isomerase	Dihydroxyacetone phosphate	7.5×10^{5}		
Triosephosphate isomerase	Glyceraldehyde 3-phosphate	2.4×10^{8}		
Lysozyme	(NAG-NAM) ₃	83		
Glucose isomerase	Glucose	7.4		
Abbreviation: NAG-NAM, N-acetylglucosamine–N-acetylmuramic acid disaccharide.				

Table 4.1 How Proteins Work (©2012 Garland Science)

rate of diffusion

Dielectric constant $F = q_1 q_2 / 4 \pi \epsilon r^2$,

Ionic strength $\mu = \frac{1}{2} \sum z_i^2 C_i$

Electrostatic screening

$$r = \left(\frac{\epsilon KT}{2N_0 e^2 \mu}\right)^{\frac{1}{2}}$$

Acetylcholinesterase

Collision rates

а

Choline

binding site

 \oplus

Ð

-(--•

Peripheral

binding site

NH

Figure 4.4 How Proteins Work (©2012 Garland Science)

Cytochrome c

Figure 4.5.1 How Proteins Work (©2012 Garland Science)

Electrostatic steering

Red basic

Green acidic

Protein pls

Figure 4.7 How Proteins Work (©2012 Garland Science)

Figure 4.8 How Proteins Work (©2012 Garland Science)

σύμπλεγμα συνάντησης

encounter complex

Figure 4.6 How Proteins Work (©2012 Garland Science)

σύμπλεγμα συνάντησης

Xie, H., Lyratzakis, A et al. PNAS 2023

barnase with inhibitor barstar

M. Hoefling, K.E. Gottschalk /Journal of Structural Biology 171 (2010) 52–63

inside of a cell

(a) (b)

Figure 4.10 How Proteins Work (©2012 Garland Science)

Figure 1.35 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Figure 4.9 How Proteins Work (©2012 Garland Science)

volume exclusion

TRENDS in Biochemical Sciences Vol.26 No.10 October 2001

relative sizes

The collision rate thus depends most critically on the size r_A of the diffusing molecule:

Figure 4.15 How Proteins Work (©2012 Garland Science)

Find the partner

Processivity decreases the off-rate from polymeric substrates

Glycogen

Table 1

Overview of differences in glycogen levels and metabolism in brain, skeletal muscle, and liver

Specialization of different tissues and cells types has led to the diversification of glycogen metabolism regulation. An overview of the main differences in glycogen content, inter- and intracellular localization, and glycogen-related regulatory enzyme expression in brain, muscle, and liver are presented.

Attributes	Brain	Skeletal muscle	Liver	
Average particle size (inner diameter, nm)	10-30	10-40	110-290	
Glycogen concentration (human, μ mol/g wet weight)	3–10	30-100	100-500	
Estimated % of tissue weight	0.1	1-2	6-8	
Estimated whole organ content (human, fed state, g)	0.5–1.5	100	400	
Tissue localization	Regional variability. Gray matter $>$ white matter	Muscle type-dependent. Type II > type I	Uniform	
Cellular/subcellular localization	Cell-dependent, highest in astrocytes. Greater in areas with high synaptic density, primary branches and fine processes	Subsarcolemmal > myofibrillar	Hepatocytes. subcellular location modulated by metabolic conditions	
Glycogenin isoform	GN1	GN1	GN2	
Glycogen phosphorylase isoform	GPB CPM	GPM	PGPL	
Glycogen synthase isoform	GS1	GS1	GS2	

J. Biol. Chem. (2018) 293(19) 7089 -7098

Glycogen associated proteins

Primary proteins in the glycogen granule proteome and their interactions

List of main human glycosome-associated proteins as identified by name and UNIPROT identifier (ID) as well as primary interactions relevant to glycogen metabolism. Protein–protein interactions were derived from databases within UniProt (uniprot.org) (80), mainly The Biological General Repository for Interaction Datasets (BioGrid) (81) and the Protein Interaction Database and Analysis System (IntAct) (82). Abbreviations used are as follows: AMPK, 5'-AMP-activated protein kinase; EMP2A, laforin; GBE, branching enzyme; GDE, debranching enzyme; GN, glycogen phosphorylase; GS, glycogen synthase; PhK, phosphorylase kinase; PP1, protein phosphatase; STDB1, starch-binding domain-containing protein 1; TRIM7, tripartite motif-containing protein.

Protein	Role	UniProt ID	Key glycogen-related interactions
Glycogenin (GN) Tripartite motif-containing protein (TRIM7, GNIP)	Initiation Initiation, regulation	P46976 (GN1, muscle) O15488 (GN2, liver) O9C029 (TRIM7)	GS, AMPK, GBE, GP, STBD1, PP1 (PPP1R3C, PPP1CA, PPP1R5), TRIM7 GN
Glycogen synthase (GS)	Synthesis	P13807 (GS1, muscle) P54840 (GS2, liver)	GN, AMPK, GBE, PP1 (PP1R3B, PPP1R3C, PPP1CA), STBD1, KAPCA, CSK21, MAPKAPK2, GSK3, PAST, laforin, MLP3B/3C, DYRK
Glycogen branching enzyme (GBE)	Synthesis	Q04446	GP, GS, GN, STBD1, GBE, VAPA
Glycogen phosphorylase (GP)	Degradation	P11217 (PYGM, muscle) P11216 (PYGB, brain) P06737 (PYGL, liver)	AMPK, PKC, GBE1, PP2, MAPKAPK2, PP1
Glycogen debranching enzyme (GDE, AGL)	Degradation	P35573	AMPK, PP1, malin, AMPK, STBD1
Malin (E3 ubiquitin-protein ligase NHLRC1)	Ubiquitin ligase	Q6VVB1	Laforin, GS, PP1, GDE, AMPK
5'-AMP-activated protein kinase (AMPK)	Kinase	Ρ54646 (α2) Q9Y478 (β1) O43741 (β2)	Laforin, PP1 (PPP2CA, PPP2R1B), PHKG2, CAMK, GN
Laforin (EPM2A)	Carbohydrate phosphatase, ubiquitin ligase	O95278	AMPK, PP1 (PPP1R3C, PPP1R3D), GSK3B, STBD1, GS, malin,
Protein phosphatase I (PP1) and targeting subunits	Phosphatase, main regulatory and catalytic subunits	PP1	AMPK, laforin, GSK3B, GN, GS
		Q16821 (PPP1R3A, GM) Q86X16 (PPP1R3B, GL) Q0VCR4 (PPP1R3C, PTG) O95685 (PPP1R3D, PPP1R6) P67775 (PPP2CA)	
		P62136 (PPP1CA) P30154 (PPP2R1B)	
Phosphorylase kinase (PhK)	Kinase	P15735 (γ, liver, testis) Q16816 (γ, muscle)	AMPK, PP1 (PPP1R3B), GP
Starch-binding domain- containing protein 1 (STBD1)	Cargo receptor for glycogen	O95210	GDE, GBE, PP1, malin, GN, GS, AMPK, GP, MLP3B/3C

Find the partner

glycogen synthase (GS) glycogen-branching enzyme (GBE)

Find the partner

Cytosolic glycogen degradation

Plastics

Plastic	Applications	Usage Time	Degradation Time *	
PET (Polyethylene terephthalate)	Bottles and other plastic containers	1–3 years	500–1000 years	
HDPE (high-density polyethylene)	Pipelines, bottles	5–35 years 250–5000 ye		
LDPE (low-density polyethylene)	Plastic wrappers and bags	1–3 years	150 years	
PVC (Polyvinyl chloride)	Pipelines and other uses in construction	35 years	>1000 years	
PP (Polypropylene)	Textiles, packaging, automotive components	5–15 years	50–800 years	
PHAs (Polyhidroxyalkanoates)	Bags, packaging, medical implants	-	<1 year	

The general structure of PHAs

Chain	x	R	Carbon	PHA	Abbreviation
		Hydrogen	C ₃	Poly(3-hydroxypropionate)	P(3HP)
	1	Methyl	C4	Poly(3-hydroxybutyrate)	P(3HB)
Chart		Ethyl	C 5	Poly(3-hydroxyvalerate)	P(3HV)
Short	2	Hydrogen	C_4	Poly(4-hydroxybutirate)	P(4HB)
		Methyl	C 5	Poly(4-hydroxyvalerate)	P(4HV)
	3	Hydrogen	C 5	Poly(5-hydroxyvalerate)	P(5HV)
	1 m	Propyl	C ₆	Poly(3-hydroxyhexanoate)	P(3HHx)
		Butyl	C7	Poly(3-hydroxyheptanoate)	P(3HHp)
		Pentyl	C_8	Poly(3-hydroxyoctanoate)	P(3HO)
		Hexyl	C9	Poly(3-hydroxynonanoate)	P(3HN)
		Heptyl	C_{10}	Poly(3-hydroxydecanoate)	P(3HD)
Madium		Octyl	C11	Poly(3-hydroxyundecanoate)	P(3HUD)
Medium		Nonyl	C12	Poly(3-hydroxydodecanoate)	P(3HDD)
		Decyl	C13	Poly(3-hydroxytridecanoate)	P(3HTD)
		Undecyl	C14	Poly(3-hydroxytetradecanoate)	P(3HTTD)
	2	Ethyl	C ₆	Poly(4-hydroxycarpoate)	P(4HC)
	3	Methyl	C ₆	Poly(5-hydroxycarpoate)	P(5HC)
		Ethyl	C7	Poly(4-hydroxyheptanoate)	P(4HH)
	g 1	Dodecyl	C15	Poly(3-hydroxypentadecanoate)	P(3HPD)
Long		Tridecyl	C16	Poly(3-hydroxyhexadecanoate)	P(3HHxD)
		Pentadecyl	C18	Poly(3-hydroxyoctadecanoate)	P(3HOD)

Similar properties to conventional plastics
Accumulated in the form of granules in microorganisms, as a type of carbon storage
PHB is the most studied PHA

Find the partner

PHB granule organization PHB granule (cross sectional cartoon) Precursor production PhaB PhaA Polymerase (PhaC) Repressor (PhaR) Acetyl-CoA Acetoacetyl-3HB-CoA CoA ¥.,.,, PHB Depolymerase (PhaZ) phasin Phasin (PhaP) 100 в ∆depolymerase ∆phasin WT ∆polymerase D 90 WT 80 ∆polymerase Nile red ∆phasin Frequency (%) 70 60 50 40 1% xylose 0.1% xylose 0.01% xylose glucose С 30 20 Nile blue 10 0 5 6 0 2 3 1 4 Puncta per cell (#)

P_{xvlose} phaAB (aceto-acetylCoA transferase and reductase)

PHB granules

Find the partner

Polyphosphate (polyP) is a linear polymer of phosphate residues linked by energy-rich phospho-anhydride bonds.

Polyphosphate granules

M. Kudryashev et al. / Biochimica et Biophysica Acta 1837 (2014) 1635–1642

Polyphosphate granules

Fig. 2. TEM micrographs of thin sections from A) 10 PI, B) 20 PI and C) 40 PI, the arrows indicate the electron-rich inclusions (bar: 200 nm).

Lytatzakis et al., BBA - General Subjects 1868 (2024) 130718

Polyphosphate granules

Lytatzakis et al., BBA - General Subjects 1868 (2024) 130718

Searching is faster in two dimensions

Figure 4.20 How Proteins Work (©2012 Garland Science)

Searching is faster in two dimensions

Reassembly of heterotrimeric G protein

GPCR-mediated G protein activation process

Searching is slightly faster again in one dimension

Figure 4.22 How Proteins Work (©2012 Garland Science)
Searching is faster in smaller compartments

Searching is faster in smaller compartments

Figure 1.5.1b Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Molecular landscape of Chlamydomonas mitochondria

doi: https://doi.org/10.1101/2024.09.03.610704

Subtomogram average of the native Chlamydomonas respirasome The I₂ III₄ IV₆ respirasome

Models of the isolated and native respirasomes

Sticky arms

Figure 4.23 How Proteins Work (©2012 Garland Science)

tyrosine kinases receptor

tyrosine kinases receptor

@1999 GARLAND PUBLISHING INC. A member of the Taylor & Francis Group

в Grb2 (adaptor) BRDG1 (signal regulation) SAP (signal regulation) SHP1, SHP2 PTP (tyrosine phosphatase) Src, Lck PTK (tyrosine kinase) Abl1 PTK (tyrosine kinase) Zap70 PTK (tyrosine kinase) PLCy1 PLC-X PLC-7c2 (phospholipid signaling) PI3K p85a RhoGAP SH2 (phospholipid signaling)

SH2 domains

(a)

© 1999 GARLAND PUBLISHING INC. A member of the Taylor & Francis Group

Structural features of recognition by SH2 domains

Structural water molecules mediating protein-peptide interactions

SH3 domains

Figure 4.24 How Proteins Work (©2012 Garland Science)

© 1999 GARLAND PUBLISHING INC. A member of the Taylor & Francis Group

Figure 4.26 How Proteins Work (©2012 Garland Science)

SH3 domain

Figure 4.27 How Proteins Work (©2012 Garland Science)

©1999 GARLAND PUBLISHING INC. A member of the Taylor & Francis Group

deactivation and activation of kinases

Figure 4.35 How Proteins Work (©2012 Garland Science)

proline-serine-threonine-alanine-isoleucine-arginine-glutamate (PSTAIRE)

Src tyrosine kinase

Src tyrosine kinase

©1999 GARLAND PUBLISHING INC. A member of the Taylor & Francis Group

Glu

Post-translational modifications of proteins

TABLE 4.3 A few covalent modifications of proteins

Modification	Site	Comments
Phosphorylation	Ser Thr Tyr	Regulates activity Regulates assembly
		negulates activity. negulates assembly
Acetylation	Lys	Creates part of histone code in chromatin
Methylation	Lys	Creates part of histone code in chromatin
Methylation	Arg	
Lipid attachment	Cys, C terminus	Attaches protein to membrane
SUMOylation	Lys	Role in transport, transcriptional regulation, apoptosis
Ubiquitylation	Lys	Regulates transport and degradation, plus histone readout
Limited proteolysis		Activates proteases (zymogens) in extracellular location (e.g. chymotrypsin); activates hormones (e.g. insulin)
Attachment of N-acetylglucosamine	Ser, Thr	Regulates activity in enzymes involved in glucose metabolism
Glycosylation	Asn, Ser/Thr	Eukaryotes. Recognition, membrane protein folding
Hydroxylation	Pro	Collagen: to facilitate triple helix formation. Irreversible
ADP ribosylation	Arg, Glu, Asp	As part of signaling, DNA repair and apoptosis
Sulfation	Tyr	Irreversible and probably required for activity
Carboxylation	Glu	Creates γ-carboxyglutamate (Gla), a calcium ligand

Table 4.3 How Proteins Work (©2012 Garland Science)

Phosphorylation

Figure 4.33 How Proteins Work (©2012 Garland Science)

Figure 4.34 How Proteins Work (©2012 Garland Science)

cell cycle

cell cycle

Biomedicine & Pharmacotherapy 107 (2018) 1326–1341

©1999 GARLAND PUBLISHING INC. A member of the Taylor & Francis Group

ubiquitylation

TABLE 4.4 Dependence of half-lifeof cytoplasmic proteins on their

Half-life

N-terminal residue

N-terminal residue

ubiquitylation

Phosphatases

Lipidation

Lipid Structure	Effects on proteins	Effects on downstream signaling in cance
GPI anchor	Plasma membrane tethering Incorporation into specific membrane domains Protein-protein interaction	Increase cell division in bladder ¹⁹⁷ , breast ¹⁹⁸ , colon ^{199,} and other cancers
Cholesterylation $f(x) = f(x) + f(x)$	Hedgehog signaling activation	Facilitate tumorigenesis and cancer growth in prostate ²⁰⁰ , breast ²⁰¹ , bladder ²⁰² , and other cancers
Myristoylation	Membrane localization Autoinhibition	Carcinogenesis in breast ²⁰³ , lung ²⁰⁴ , and other cancers
Palmitoylation	Plasma membrane localization Partitioning into lipid rafts Protein maturation/quality control	Promote proliferation and invasion in melanoma ¹⁷⁰ , intestinal ²⁰⁵ , and other cancers
Farnesylation	Membrane localization Conformational change Protein-protein interaction	Promote cell growth, survival and metastasis in lung ²⁰⁶ , myeloid leukemia ²⁰⁷ pancreatic ²⁰⁸ , and other cancers
Geranylgeranylation	Membrane localization Protein-protein interaction	Facilitate cell proliferation and migration in lymphoma ¹⁷⁷ , leukemia ²⁰⁹ , and other cancers

Front. Oncol., 29 June 2017

Lipidated therapeutics

B) Unnatural Lipidation

Lipidated therapeutics

Escape from Human Immunodeficiency Virus Type 1 (HIV-1)

virus with envelope glycoprotein

viral and host cell membrane

fusion

Viruses 2012, 4(12), 3859-3911

Drosophila nucleosome core

H2A, H2B, H3, and H4

- phosphorylation
- ubiquitylation
- acetylation or methylation

effects

Figure 4.39 How Proteins Work (©2012 Garland Science)
Protein quality control

Figure 4.12.1 How Proteins Work (©2012 Garland Science)

Frontiers in Cell and Developmental Biology 8:425

Figure 4.13.1 How Proteins Work (©2012 Garland Science)

Pancreatic β cells

NH₃

COO

B chain

self-splicing polypeptides

Figure 4.10.1 How Proteins Work (©2012 Garland Science)

Figure 4.10.2 How Proteins Work (©2012 Garland Science)

Catalysis

free energy profiles of uncatalyzed and enzyme-catalyzed reactions
(A)

reaction coordinate

reaction coordinate

Figure 1.28 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

isomer

enantiomer

diastereoisomer

Figure 1.1.3 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

catalytic mechanism of the pancreatic protease chymotrypsin

Figure 1.29 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

selectivity

Pocket

F Phenylalanin, Y Tyrosin, W Tryptophan, M Methionine K Lysine, R Arginine A Alanine, S Serine

related serine peptidases

Specificity pocket mutations leading to acquisition of tryptic activity

