Membrane Proteins

Anatomies of two types of biological cells

Evolution of mitochondria

aerobic bacterium

Membrane Lipids Form Bilayers in Water

(C)

(B) diacyl phospholipid (general structure) $^{3}CH_{2} - O - C$ $^{0}CH_{2} - O - C$ $^{0}CH_{2} - O -$

(D)

dialkyl phospholipid

ganglioside GM2 complex oligosaccharide

Molecular dynamics

(A)

(B)

Composition of the membranes

Composition of Membranes (% by weight)							
Membrane	Protein	Lipid	Carbohydrate				
Myelin	20	75	5				
Red blood cell ghosts	49	43	8				
Plasma membranes							
Liver cells	58	42	(5–10) ^a				
Ehrlich ascites	67	33	(5–10) ^a				
Amoeba Proteus	25	32	15				
Mitochondrion							
Outer membrane	52	48	(2–4)ª				
Inner membrane	76	24	(1–2) ^a				
Bacteria (Gram-positive)	75	25	(10)ª				

^aCarbohydrate is due to glycosylated proteins and lipids.

Based on data provided in Guidott G [1972] Arch Intern Med 129: 194–301.

Curvature model of membrane vesicles

cylinders and capped cones

bilayer-forming

Л

cones

(C)

(A)

Figure 2.20 Cell Membranes (© Garland Science 2016)

Structure of a DOPC bilayer

Predicting transmembrane helices

hydrophol	picity amino acio	d values
Kyte and		
Doolittle	Eisenberg	Tanford
Ala: 1.800	Ala: 0.620	Ala: 0.620
Arg: -4.500	Arg: -2.530	Arg: -2.530
Asn: -3.500	Asn: -0.780	Asn: -0.780
Asp: -3.500	Asp: -0.900	Asp: -0.090
Cys: 2.500	Cys: 0.290	Cys: 0.290
Gln: -3.500	Gln: -0.850	Gln: -0.850
Glu: -3.500	Glu: -0.740	Glu: -0.740
Gly: -0.400	Gly: 0.480	Gly: 0.480
His: -3.200	His: -0.400	His: -0.400
lle: 4.500	lle: 1.380	lle: 1.380
Leu: 3.800	Leu: 1.060	Leu: 1.530
Lys: -3.900	Lys: -1.500	Lys: -1.500
Met: 1.900	Met: 0.640	Met: 0.640
Phe: 2.800	Phe: 1.190	Phe: 1.190
Pro: -1.600	Pro: 0.120	Pro: 0.120
Ser: -0.800	Ser: -0.180	Ser: -0.180
Thr: -0.700	Thr: -0.050	Thr: -0.050
Trp: -0.900	Trp: 0.810	Trp: 0.810
Tyr: -1.300	Tyr: 0.260	Tyr: 0.260
Val: 4.200	Val: 1.080	Val: 1.800

Figure 3.15 Cell Membranes (© Garland Science 2016)

Hydropathy plot analysis of protein sequences

peptide bond

Topology and orientation of helical integral membrane proteins

Figure 3.4 Cell Membranes (© Garland Science 2016)

Topology diagrams and X-ray structures for various transmembrane proteins

ELIC, pentameric ligand-gated ion channel

Characteristics of transmembrane $\boldsymbol{\alpha}$ helices

Characteristics of transmembrane $\boldsymbol{\alpha}$ helices

Topology diagrams to probe intra- and extracellular orientation

Transmembrane segment variations

Figure 3.18 Cell Membranes (© Garland Science 2016)

Lipid–protein interactions

- 1. protein-water interactions
- 2. protein–protein interactions
- 3. protein–lipid tail (hydrophobic core) interactions
- 4. protein–lipid head group (bilayer interface) interactions

Interactions of helices in lipid bilayers

	$\Delta G = G_2 - $ in H ₂ O	G ₁ (kcal/mol) in (CH ₂) _n
hydrophobic	20	0
AB ion pair	2	20 – 30
AB strong H bond	0	10 – 20
AB H bond	-1	5
conformation entropy	-5	-5

Figure 3.23b Cell Membranes (© Garland Science 2016)

Interhelical hydrogen bonds. In bacteriorhodopsin from Halobacterium salinarum Tyr185 (orange) of helix 6 and Asp212 (yellow) of helix 7 form an interhelical hydrogen bond (dashed line).

Aromatic–aromatic interactions. In subunit I of aberrant ba3-cytochrome c oxidase from Thermus thermophilus Trp110 of helix 4 interacts with Tyr23 and Leu27 of helix 1, although it is partly exposed to the lipid bilayer. van der Waals contacts. Small residues (orange and yellow) increase the homodimer interface and allow for extensive van der Waals contacts in human glycophorin A Hydrogens are shown for Gly residues only

Salt bridges. Lys358 and Asp237 are crucial for membrane insertion of lac permease from E. coli and have been suggested to form a salt bridge within the protein's transmembrane region

Bind to Membranes with the Help of Covalently Linked Lipids

SH3 domain

(D)

- Src(2-16) myristate-GS SKSKPKDPSQRRR
- MARCKS(151-175) KKKKKRFSFKKSFKLSGFSFKKNKK
- HIV-1 Gag (2-31) myristate-GA RASVLSGG ELDRWEKIRLRPGGKKKYKL
- GKKKKKKSKTSC-farnesyl K-Ras 4B (174–185)

K Lys, R Arg, G Gly, S Ser, D Asp, E Glu, N Asn, V Val

Lateral Pressure

Lateral Pressure

Forced unfolding of membrane-bound BR

Protein–lipid complexes

Figure 3.25 Cell Membranes (© Garland Science 2016)

Specific lipid effects

Lipids can act as co-factor that facilitate the folding or stabilise the structure of membrane proteins

Diacylglycerol kinase from E. coli, which requires 1,2-dioleoyl-sn-glycero-phosphoglycerol (DOPG) for proper folding.

Cardiolipin, a four-chain lipid binds to the large mitochondrial membrane protein bovine cytochrome c oxidase and is essential for its function. Cardiolipin is explicitly required for association of cytochrome c oxidase subunits IVa and IVb.

Several membrane-protein crystal structures show tightly bound lipid molecules and provide valuable insights into how these specifically interact with membrane proteins

The function of KvAP channel, a voltage- dependent K+-channel, depends on certain lipid species. KvAP senses voltage with the aid of Arg-containing structures located at the membrane interface and pointing into the membrane interior

The functional state of KvAP requires POPE or 1-palmitoyl-2-oleoyl-sn-glycero-phosphoglycerol (POPG) and that phosphate groups play a crucial role, as their enzymatic removal disrupts function

Figure 3.22c Cell Membranes (© Garland Science 2016)

Oligomerization and clustering of membrane proteins

Figure 3.22b Cell Membranes (© Garland Science 2016)

Membrane active peptides

melittin

Melittin Insertion into Cell Membranes

Molecules 2019, 24, 1775; doi:10.3390/molecules24091775

α -Helical ionophoric peptides

Gly-Ile-Gly-Lys-Phe-Leu-His-Ser-Ala-Lys-Lys-Phe-Gly-Lys Ala-Phe-Val-Gly-Glu-Ile-Met-Asn-Ser.

Figure 3.27c Cell Membranes (© Garland Science 2016)

α -Helical ionophoric peptides

Amphiphilic helices

apolipoprotein A-I tandem amphiphilic helices

lipoprotein A-I tandem amphiphilic helices

amphiphilic membrane scaffold proteins

nanodisc with bacteriorhodopsin trimer

antimicrobial peptides (AMPs)

Cyclic peptides self-assemble into β -sheet type nanotubes

Figure 3.28a Cell Membranes (© Garland Science 2016)

Cyclic peptides self-assemble into β-sheet type nanotubes

Figure 3.28b Cell Membranes (© Garland Science 2016)

teichoic acid biosynthesis protein F

Monotopic membrane proteins

Monotopic membrane proteins

prostaglandin H2 synthase

PGH₂ **Synthase** is a heme-containing **dioxygenase**, bound to ER membranes.

(A dioxygenase incorporates **O**₂ into a substrate).

PGH₂ Synthase exhibits 2 activities: cyclooxygenase & peroxidase.

Figure 3.6b Cell Membranes (© Garland Science 2016)

Lipid anchor types and function

Table 3.2 Lipid anchor types and function

Common name	Lipid	Linker	Target membrane	Topology	Reversible	Function
Myristic acid	C14:0	N-term G (internal K)	Any	Cytosolic	No	Targeting
Palmitic acid	C16:0	Cys (K, S, T)	Any	Cytosolic	Yes	Sorting, trafficking
Farnesyl	C15	C-term (CaaX, CXC, XXCC)	Plasma	Cytosolic	No	Sorting, protein interaction
Geranylgeranyl	C20	C-term (CaaX, CXC, XXCC)	Plasma	Cytosolic	No	Sorting, protein interaction
GPI (SPI)	Glycerolipid (sphingolipid)	C-term	Plasma	Extracellular	Yes	Cell communication

GPI, glycosylphosphatidylinositol; SPI, sphingolipid inositol; C-term, C-terminal; N-term, N-terminal.

Table 3.2 Cell Membranes (© Garland Science 2016)

Lateral diffusion is faster for lipid-anchored than for transmembrane proteins

Peripheral membrane proteins as subunits of protein complexes

Figure 3.8 Cell Membranes (© Garland Science 2016)

Peripheral membrane proteins as subunits of protein complexes

DPIA + hv \rightarrow DP^{*}IA \rightarrow DP⁺I⁻A \rightarrow DP⁺IA⁻ \rightarrow D⁺PIA⁻

lomain

Peripheral membrane proteins as subunits of protein complexes

Peripheral lipid-binding membrane proteins

Figure 3.9b Cell Membranes (© Garland Science 2016)

Peripheral lipid-binding membrane proteins

Action

