Self assembly

Shape in eukaryotic cells

Figure 14.1 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

- Shape in eukaryotic cells is provided by the cytoskeleton that consists of actin, tubulin, and intermediate filaments.
- Bacterial cells come in a variety of different shapes, including spheres, rods, spirals, and crescents.
- Shape is important for bacterial cells because it plays a role in cell division, helps to maximize the uptake of nutrients, and aids cell movement.

Filaments and microtubules within the cell

MICROTUBULES

25 nm

 $10\,\mu m$

Actin

Actin filament

Figure 16-12 Molecular Biology of the Cell (© Garland Science 2008)

Procaryotic actin

Prokaryotes also have a dynamic, filamentous network of proteins, which are homologous to the eukaryotic cytoskeletal elements.

In non-spherical bacteria, the actin homologue MreB is essential for shape maintenance as depletion of MreB through genetic knockouts or MreBtargeted drug treatment results in misshapen cells that eventually lyse

microtubules

Dynamic instability

Figure 7.27 How Proteins Work (©2012 Garland Science)

Tubulin interacting proteins

TABLE 7.2 Proteins that interact with tubulin/microtubules

Protein	Function
γ-TuRC	Initiates filament formation
MAP, XMAP215	Stabilizes filaments
Tau, MAP-2	Cross-links filaments in parallel rows
Stathmin, kinesin 13, katanin	Cuts or depolymerizes filaments
+TIP, plectin	Links filament to other proteins

Fiber growth

Figure 7.30 How Proteins Work (©2012 Garland Science)

kinesins and dyneins

Drugs

Table 16–2 Drugs That Affect Actin Filaments and Microtubules

ACTIN-SPECIFIC DRUGS	
Phalloidin	binds and stabilizes filaments
Cytochalasin	caps filament plus ends
Swinholide	severs filaments
Latrunculin	binds subunits and prevents their polymerization
MICROTUBULE-SPECIFIC DRUGS	
Taxol	binds and stabilizes microtubules
Colchicine, colcemid	binds subunits and prevents their polymerization
Vinblastine, vincristine	binds subunits and prevents their polymerization
Nocodazole	binds subunits and prevents their polymerization

Fluorescence microscopy

Virus Structure

Virus Structure

- Size
 - 17 nm 3000 nm diameter
- Basic shape
 - Rod-like
 - "Spherical"
- Protective Shell Capsid
 - Made of many identical protein subunits
 - <u>Symmetrically</u> organized
 - 50% of weight
 - Enveloped or non-enveloped
- Genomic material
 - DNA or RNA
 - Single- or double-stranded

© 1999 GARLAND PUBLISHING INC A member of the Taylor & Francis Group

Virus Structure

- Virus capsids function in:
 - Packaging and protecting nucleic acid
 - Host cell recognition
 - Protein on coat or envelope "feels" or "recognizes" host cell receptors
 - Genomic material delivery
 - Enveloped: cell fusion event
 - Non-enveloped: more complex strategies & specialized structures

Viruses

Figure 8.4 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

assembly pathways

linear assembly pathway

branched assembly pathway

Figure 8.2a Molecular Biology of Assemblies and Machines (© Garland Science 2016)

bacteriophage T4

Figure 8.2b Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Figure 8.3 Molecular Biology of Assemblies and Ma

d Machines (© Garland Science 2016)

recognition

<u>Nature Reviews</u> <u>Immunology</u> volume 20, pages 363–374 (2020)

The structure of the trimeric spike protein of SARS-CoV-2.

(2020)

a SARS-CoV spike protein (316–510) 316 FPNITNLCPFGEVFNATKFPSVYAWERKKISNCVADYSVLYNSTFFSTFK 365 SARS-CoV-2 spike protein (338–533) 338 FPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFK 387 SARS-CoV spike protein (316–510) 366 CYGVSATKLNDLCFSNVYADSFVVKGDDVRQIAPGQTGVIADYNYKLPDD 415 SARS-CoV-2 spike protein (338–533) 388 CYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDD 437

SARS-CoV-2 spike protein (338-533) 438 FTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGST 487

416 FMGCVLAWNTRNIDATSTGNYNYKYRYLRHGKLRPFERDISNVPFSPDGK 465

466 PCT-PPALNCYWPLNDYGFYTTTGIGYQPYRVVVLSFELLNAPATV 510

<u>Nature Reviews Immunology</u> volume 20, pages 363– 374 (2020)

SARS-CoV spike protein (316-510)

SARS-CoV spike protein (316-510)

History

- In 1953, Crick & Watson proposed ... principles of virus structure
 - Key insight:
 - Limited volume of virion capsid => nucleic acid sufficient to code for only a few sorts of proteins of limited size
 - Conclusion:
 - Identical subunits in identical environments
 - Icosahedral, dodecahedral symmetry
- In 50's & 60's Klug and others confirmed that several (unrelated) "spherical" viruses had icosahedral symmetry
 - (Used negative staining & electron microscopy)
- Conclusion:
 - Icosahedral symmetry is preferred in virus structure

Icosahedral Symmetry

12 vertices

- 20 faces (equilateral triangles)
- 5-3-2 symmetry axes
- 60 identical* subunits in identical environments can form icosahedral shell * asymmetric

But ...

- Clear evolutionary pressure to make larger capsid
 - Using larger subunits helps very little
 - Using more subunits helps a lot
- Not possible to form icosahedral shell (of identical units in identical environments) with more than 60 subunits
- Viruses with more than 60 subunits were observed
- In 1962, Caspar & Klug proposed the theory of "quasi-equivalence"
 - Not all protein subunits are equivalent
 - "Identical" subunits in slightly different environments
 - Only certain numbers of subunits will can be packed into closed regular lattice.

X-ray Crystallography of Viruses

- Symmetry of protein shells makes them uniquely well-suited to crystallographic methods
- Viruses are the largest assemblies of biological macromolecules whose structures have been determined at high resolution

Electron Microscopy

Electron Microscopy

focused ion beam

FIB/SEM tomography of an HCMV infected nucleus

Quasi-equivalence

- Subunits are in "minimally" different environments
 - Pentamers at vertices
 - Hexamers elsewhere
- Predicts packing arrangements of larger capsids
 - Shift from T1 to T4 packing
 - => 8-fold increase in volume

Goldberg diagram

Figure 8.10 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Spherical viruses have icosahedral symmetry

Icosahedral capsids

Figure 8.8 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

interactions between complementary surface patches

Figure 8.13 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

tobacco mosaic virus (TMV

Figure 8.15 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Helical viruses

with RNA

without RNA

Disassembly of TMV

ribosome-mediated disassembly

25 nm

Figure 8.18c Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Figure 8.18d Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Figure 8.26 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

0.7 kb RNA

Life cycle

Figure 1. CryoEM and 3D reconstruction of hepatitis B virus (HBV) core assembled from full-length HBV core proteins at 3.5Å resolution.

Yu X, Jin L, Jih J, Shih C, Hong Zhou Z (2013) 3.5Å cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein. PLOS ONE 8(9): e69729. https://doi.org/10.1371/journal.pone.0069729 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729

Figure 2. Comparisons between corresponding cryoEM structures (green) and crystal structures (red) by superimposition.

Yu X, Jin L, Jih J, Shih C, Hong Zhou Z (2013) 3.5Å cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein. PLOS ONE 8(9): e69729. https://doi.org/10.1371/journal.pone.0069729 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729

Figure 4. Maps of HBV core reconstruction filtered to 10Å resolution.

Yu X, Jin L, Jih J, Shih C, Hong Zhou Z (2013) 3.5Å cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein. PLOS ONE 8(9): e69729. https://doi.org/10.1371/journal.pone.0069729 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729

neutron diffraction

Figure 8.28 Molecular Biology of Assemblies and

tomato bushy stunt virus (TBSV)

assembly and maturation of human immunodeficiency virus (HIV)

Box 8.1 Figure 8.1.2 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Influenza virus

100 nm

Figure 8.60b Molecular Biology of Assemblies and Machines (© Garland Science 2016)

membrane

M1 matrix protein

Figure 8.60c Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Figure 8.60a Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Assembly pathway of influenza virus.

Figure 8.62 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Display of proteins on accessory proteins of dsDNA bacteriophages

Display of proteins on accessory proteins of dsDNA bacteriophages

Figure 8.67 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Display of an Ig domain

Display of green fluorescent protein at the tips of HB₀V capsid spikes

Figure 8.69 Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Generation of protective vaccines

20 nm

Figure 8.70a Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Figure 8.70b Molecular Biology of Assemblies and Machines (© Garland Science 2016)

Figure 8.71 Molecular Biology of Assemblies and Machines (© Garland Science 2016)