Protein Interactions in vivo mv2/2 = KT/2.

In a chemical reaction which is fast enough
© v=(kT/m)'/2

-

An enzyme rate depends on

how fast substrate can diffuse into the active In one direction
site, and how fast the product can diffuse out.

This rate is proportional to the diffusional
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Figure 4.1 How Proteins Work (©2012 Garland Science)

k../Ky is the catalytic efficiency. It is used to rank enzymes. A big
K../Ky means that an enzyme binds tightly to a substrate (small Ky,),
with a fast reaction of the ES complex.

k../Kn is @an apparent second order rate constant

V=Kea/ Ku[Eo[S]

Kcat is the catalytic constant for the conversion of substrate
into product
Km is the Michaelis constant

K.a/Ky 18 the specificity constant. It is used to distinguish and describe
various substrates.



TABLE 4.1 Values of k.,t/K,, for some enzymes

Acetylcholinesterase Acetylcholine 15 < 10°
Carbonic anhydrase Carbon dioxide 8.3x 107
Catalase Hydrogen peroxide 4.0x108
Fumarase Fumarate 16 <10
Fumarase Malate 3.6 x107
Superoxide dismutase Superoxide 2.8x10°
Triosephosphate isomerase Dihydroxyacetone phosphate 7.5%10°
Triosephosphate isomerase Glyceraldehyde 3-phosphate 24 10°
Lysozyme (NAG-NAM)3 83

Glucose isomerase Glucose 7.4

Abbreviation: NAG-NAM, N-acetylglucosamine—-N-acetylmuramic acid disaccharide.

Table 4.1 How Proteins Work (©2012 Garland Science)
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relative sizes
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PHB Depolymerase
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Find the partner

R. eutropha

PolyP Granule
(Poly-phosphatosome)

Polyphosphate (polyP) is a linear polymer of phosphate
residues linked by energy-rich phospho-anhydride bonds.
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Searching is slightly faster again in one
dimension
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Searching is faster in smaller compartments
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Post-translational modifications of proteins

S
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tyrosine ; \J

¢
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Attaches a sugar, usually ¢ é\
to an "N"” or "O"” in an o'g A\
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Ubiquitination D

Adds ubiquitin to lysine
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o‘ils@

SUMOylation > &
Adds a small protein i i
SUMO (small |
ubiquitin-like modifier) o‘gél\g

to a target protein ‘
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TABLE 4.3 A few covalent modifications of proteins

Phosphorylation Ser, Thr, Tyr Regulates activity. Regulates assembly

Acetylation Lys Creates part of histone code in chromatin

Methylation Lys Creates part of histone code in chromatin

Methylation Arg

Lipid attachment Cys, Cterminus  Attaches protein to membrane

SUMOylation Lys Role in transport, transcriptional regulation,
apoptosis

Ubiquitylation Lys Regulates transport and degradation, plus histone
readout

Limited proteolysis Activates proteases (zymogens) in extracellular
location (e.g. chymotrypsin); activates hormones
(e.g. insulin)

Attachment of Ser, Thr Regulates activity in enzymes involved in glucose

N-acetylglucosamine metabolism

Glycosylation Asn, Ser/Thr Eukaryotes. Recognition, membrane protein
folding

Hydroxylation Pro Collagen: to facilitate triple helix formation.
Irreversible

ADP ribosylation Arg, Glu, Asp As part of signaling, DNA repair and apoptosis

Sulfation Tyr Irreversible and probably required for activity

Carboxylation Glu Creates -y-carboxyglutamate (Gla), a calcium

ligand

Table 4.3 How Proteins Work (©2012 Garland Science)
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cell cycle

(a) (6)

active CDK
initiates milosis
il 4 (W 2
o Ye
mitotic
cyclin degraded
milotic cyclin
inachive
S phase

CDK

S phase
cyclin

active CDK initiales
DNA replication



cell cycle

prepares the cell

for DNA

replication in §

activates DNA

replication inside
the nucleus in §

promotes the assembly
of the mitotic spindle
and other tasks in the

a Triggers cells to phase. ff’_a_sfi. cytoplasm to prepare
move from GO to for mitosis.
G1 and from G1
into S phase. &
G, Phase S Phase G, Phase Mitosis

Cdk1 kinase

Q \ cyclinB  cyclinB
synthesis
@ =

entry into
mitosis activation of cell

cycle proteins
including ubiquitin

exit from ligase
g mitosis
destruction ubiquitin

of cyclin B

Figure 4.9.3 How Proteins Work (©2012 Garland Science)



CD kinase

Q1959 CGARLAND PUBLISHING INC,

A member of Ue Taghr & Francs Group



CD kinase

_ |
DI 45.
Ser/Thr of
-.\\ protein substrate

Cyclin A - CDK2

(a) (b)
©199% GARLAND PUBLISHING INC
(b) A member of live Tayler & Francis Group

©1999 GARLAND PUBLISHING INC.
A member of tive Taylor & Francs Group



TABLE 4.4 Dependence of half-life
of cytoplasmic proteins on their

N-terminal residue

ubiquitylation e

Met, Gly, Ala, Ser, Thr, Val >20h

C terminus lle, Glu 30 min
Tyr, GIn 10 min
Pro 7 min
Leu, Phe, Asp, Lys 3 min
Arg 2 min

Table 4.4 How Proteins Work (©2012 Garland Science)
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