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HOW DOES A FLUORESCENT ION PROBE FUNCTION?

*THE NEED OF AN IONOPHORE ‘;L. ‘ ’I‘

*THE NEED OF A CHROMOPHORE

*THE NEED OF A FLUORESCENCE SIGNAL

*THE NEED OF A RESPONSE TO THE ION




Desired Properties for Intracellular lon Indicators

High selectivity for the ion being studied.

A binding constant adjusted to the mid-point of the physiological concentration range of
the ion: 0,1 Kd<[ Ca2+];<10-Kd.

A significant fluorescence Stokes shift to avoid the overlap of excitation and emission
peaks.

A large extinction coefficient, meaning high absorbance.

A large fluorescence quantum yield.

An excitation wavelength above 400 nm to minimize "background" fluorescence,
Non-toxicity, and

In the case of measurements of intracellular components, increased permeability to the
cell membrane.



How do these indicators become cell permeable?
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Which are the factors that influence the properties
of fluorescent ion probes?
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Influence of chromophore modification in the fluorescence profile
of Fura-2 and Fura-Red indicators
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Introduction of the coumarin moiety as a chromophore group:
The case of the BTC Indicator
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Fluorescence excitation
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Looking from the point of view of the fluorescence profile:
photoinduced charge transfer (PCT) or ratiometric probes

CATION INTERACTION CATION
DESTABILIZES SYSTEM INTERACTION
STABILIZES SYSTEM

® interaction with the donor group
@ interaction with the acceptor group

...‘

O %

’ | 0 bk

A case of a A case of a
blue shift red shift




Combining modifications in the chromophore and the
ionophore moieties: Synthesis of a coumarin-type Pb?* probe
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Photoinduced Electron Transfer (PET) or “Turn-On” Indicators

In the ion bound form, the redox potential of
the donor changes and its HOMO becomes
lower in energy than that of the fluorophore. As
a result, PET is not possible any more and an
increase in fluorescence intensity is observed
upon cation binding.
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In the photoinduced electron transfer (PET) , in the ion-
free probe excitation of the fluorophore promotes an
electron of the highest occupied molecular orbital
(HOMO) to the lowest unoccupied molecular orbital
(LUMO). Consequently a PET takes place from the
HOMO of the donor to that of the fluorophore causing
fluorescence quenching of the latter.




Combining modifications in the chromophore and the ionophore
moieties: Synthesis of a monoaza crown ether-type Hg?* probe
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Synthesis of a monoaza crown ether-type Hg?* probe:
lon Selectivity studies

K, (Hg?*) =13.1uM
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DFT geometry optimization for the 3-Hg2+ complex.
Atoms are represented in colours; mercury: blue, sulphur: yellow,
nitrogen: pink, oxygen: red, carbon: grey, hydrogen: white.

S. Voutsadaki, G. K. Tsikalas, E. Klontzas, G. E. Froudakis, H. E. Katerinopoulos Chem. Commun., 2010, DOI: 10.1039/B926384E



Additional Fluorescent lon Probes from our Laboratory
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