Προσδιορισμός Αλογονωμένων Οξικών Οξέων σε Ύδατα με τις Μεθόδους LC-ESI-MS, GC-EI-MS & GC-NCI-MS

Ε. Γ. Στεφάνου & Σ. Καργάκη

Απολύμανση νερού

 Ως απολύμανση ορίζεται κάθε φυσική ή χημική διαδικασία η οποία σκοτώνει ή αδρανοποιεί μικροοργανισμούς όπως βακτήρια, ιούς και πρωτόζωα, τα οποία μπορούν να προκαλέσουν ασθένειες όπως τύφο, χολέρα, ηπατίτιδα.

 ✓Οι τεχνικές χλωρίωσης του νερού αναπτύχθηκαν στα τέλη του 19ου με τις αρχές του 20ου αιώνα.

✓Το πρώτο σύστημα απολύμανσης μεγάλης κλίμακας δημιουργήθηκε στις Ηνωμένες Πολιτείες (Jersey City Water Works, 1908).

 ✓ Η χλωρίωση στην Ελλάδα αναγνωρίστηκε σαν επίσημη μέθοδος απολύμανσης το 1958 (Υγ.Διάταξη, αριθ.ΥΜ5673/4-12-1957)

Παραπροϊόντα απολύμανσης (DBPs)

Συμβατικά DBPs (ελεγχόμενα) & Αναδυόμενα DBPs (μηελεγχόμενα)

- Τα DBPs ανιχνεύτηκαν το 1974 στο πόσιμο νερό.
- Αντίδραση μεταξύ του απολυμαντικού μέσου και της οργανικής ύλης
- Τα DBPs χωρίζονται σε:
 - 1) Ανόργανα
 - χλωρικά ανιόντα (CIO₃-)
 - βρωμικά ανιόντα (BrO₃⁻)
 - 2) Οργανικά
 - τριαλογονομεθάνια (THMs)
 - αλογονωμένα οξικά οξέα (HAAs)
 - αλογονωμένα ακετονιτρίλια (HANs)
 - αλογονωμένες κετόνες (HKs)
 - χλωροπικρίνη (CPN)
 - τετραχλωράνθρακας (TCC)

Αλογονωμένα Οξικά Οξέα (Haloacetic acidsHAAs)

Αναλυτικές μέθοδοι προσδιορισμού ΗΑΑs

I) Ιοντική Χρωματογραφία-Φασματομετρία Μάζας (Suppressed IC-ESI-MS)

IC-ESI-MS

Προετοιμασία Δειγμάτων

IC-ESI-MS

<u>Πειραματικές Συνθήκες MS:</u>

ΗΑΑς παρατηρούνται στο ESI-MS ως «ψευδο-μοριακά ιόντα» [M-H]⁻ & ως αποκαρβοχυλιωμένα ιόντα [M-COOH]⁻.

Haloacetic acids	[M-H] ⁻	[M-COOH] ⁻	Fragmentation potential (V)
MCAA	93		18
ΜΙΑΑ	185		19
MBAA	139		18
DCAA	127		18
BCAA	173		18
DBAA	217		18
ТСАА		117	20
BDCAA		163	22
DBCAA		207	16
ТВАА		251	18

Ισοτοπική αναλογία HAAs

	HAAs	M-H ⁻	[(M-H)+2] ⁻	[M+4] ⁻	[(M-H)+8] ⁻	Αναλογία
	MCAA	93	95			3:1
4	MBAA	139	137			1:1
н-и	DCAA	127	129	131		9:6:1
l l	BCAA	171	173	175		3:4:1
	DBAA	215	217	219		1:2:1
4	HAAs	M-CO ₂ -	[(M-CO ₂)+2] ⁻	[(M-CO ₂)+4] ⁻	[(M-CO ₂)+8] ⁻	Αναλογία
02]	TCAA	117	119	121	123	3:3:1:0.1
И-C	BDCAA	161	163	165	167	9:15:7:1
w]	DBCAA	205	207	209	211	3:7:5:1
	TBAA	249	251	253	255	1:3:3:1

93 97

MCAA: [M-H]

127 133

DCAA: [M-H]

Ανακτήσεις και όρια ανίχνευσης μεθόδου IC-ESI-MS

	Ανάκτηση (RSD)% (n=5)	MDL (µg/L)
MCAA	25,6 (4,4)	1,79
ΜΙΑΑ	27,6 (6,2)	1,41
MBAA	55,0 (5,0)	0,75
DCAA	67,5 (1,6)	0,75
BCAA	151,1 (3,5)	0,29
DBAA	130,6 (4,6)	0,43
TCAA	133,1 (2,9)	0,33
BDCAA	108,3 (0,3)	0,34
DBCAA	105,3 (1,2)	0,22
TBAA	124,4 (7,1)	O,35

ΙΙ) Αέρια Χρωματογραφία-Φασματομετρία Μάζας (GC-MS)

<u>Απομόνωση – εστεροποίηση HAAs με χρήση LLE*</u>

Επιλεγμένα ιόντα για ανάλυση HAAs με χρήση GC/MS

	MCAA	MBAA	DCAA	ТСАА	BCAA	DBAA	BDCAA	DBCAA	TBAA	
EI_SIM		X_3C -COOMe \rightarrow (COOMe): 59								
m/z	42/ <mark>59</mark> /79/ 108/110	<mark>59</mark> /93/95/ 121/123	<mark>59</mark> /83/ 85	<mark>59/</mark> 117/ 119/121/ 123	<mark>59</mark> /127/ 129/131	<mark>59</mark> /171/ 173/175	<mark>59/161/</mark> 163/165	<mark>59/205/</mark> 209/211	<mark>59/249/</mark> 251/25 3/255	

	MCAA	MBAA	DCAA	ТСАА	BCAA	DBAA	BDCAA	DBCAA	TBAA	
NCI_SIM		CI: 35,37 / Br: 79,81 / CI,Br: 35,37,79,81								
m/z	<mark>35</mark> /37	<mark>79</mark> /81	<mark>35</mark> /37	<mark>35</mark> /37	35/37 <mark>79</mark> /81	<mark>79</mark> /81	35/37 <mark>79</mark> /81	35/37 <mark>79</mark> /81	<mark>79</mark> /81	

Ανάλυση ΗΑΑς με χρήση GC/MS

Ανακτήσεις και όρια ανίχνευσης μεθόδων GC-EI-MS & GC-NCI-MS

	Ανάκτηση (RSD)%	El	NCI		
	(n=5)	MDL (μg/L)0,511,831,700,020,120,010,220,010,090,010,100,01			
МСАА	91,0 (2,6)	0,51	1,83		
MBAA	67,2 (1,4)	1,70	0,02		
DCAA	112,4 (2,3)	0,12	0,01		
BCAA	128,8 (1,4)	0,22	0,01		
DBAA	117,7 (1,4)	0,09	0,01		
ТСАА	101,7 (0,8)	0,10	0,01		
BDCAA	99,2 (5,2)	0,44	0,09		
DBCAA	100,5 (2,5)	1,30	0,09		
TBAA	90,2 (5,2)	1,66	0,30		

Προσθήκη: 0,1 - 39,8 μg/L

Abundance

ΕΝΩΣΗ	<u>MCAA</u>	<u>MBAA</u>	DCAA	<u>TCAA</u>	BCAA	DBAA	BDCAA	DBCAA	TBAA
Recovery %	91.02	67.23	122.44	128.76	117.72	101.65	99.18	100.50	90.15
<u>El</u>									
MDL (ug/l)	0.508	1.697	0.120	0.221	0.085	0.104	0.437	1.303	1.659
LOQ (ug/l)	0.760	1.874	0.124	0.205	0.090	0.125	0.444	1.472	2.253
	<u>NCI</u>								
MDL (ug/l)	1.834	0.019	0.008	0.003	0.003	0.007	0.088	0.088	0.295
LOQ (ug/l)	2.036	0.033	0.020	0.004	0.005	0.009	0.106	0.096	0.300

Σύγκριση IC-ESI-MS, GC-EI-MS & GC-NCI-MS

Ένωση	MCAA	MBAA	DCAA	TCAA	BCAA	DBAA	BDCAA	DBCAA	TBAA
IC-ESI-MS									
MDL (µg/l)	1,80	0,75	0,75	0,32	0,29	0,34	0,34	0,21	0,35
		-		EI-GC-	MS				
MDL (µg/l)	0,51	1,70	0,12	0,22	0,09	0,10	0,44	1,30	1,66
NCI-GC-MS									
MDL (µg/l)	1,83	0,02	0,01	0,003	0,003	0,01	0,09	0,09	0,29

Σύγκριση μεθόδων

- Η ανάλυση των ΗΑΑς με αέρια χρωματογραφία (GC) απαιτεί εκχύλιση από το νερό και περαιτέρω παραγοντοποίηση προς τους αντίστοιχους μεθυλεστέρες. Η εκχύλιση και η εστεροποίηση αποτελούν χρονοβόρες διαδικασίες και καθιστούν τη μέθοδο GC-MS ευαίσθητη στην απώλεια αναλύτη και στις επιμολύνσεις. Τα παραπάνω αποφεύγονται με τη χρήση της μεθόδου IC-ESI-MS, όπου δεν απαιτείται στάδιο παραγοντοποίησης των HAAs.
- Χαμηλότερα όρια ανίχνευσης επιτυγχάνονται με χρήση της μεθόδου GC/ MS σε σχέση με τη μέθοδο IC/MS.
- Στην περίπτωση της μεθόδου IC-ESI-MS, τα όρια ανίχνευσης του οργάνου (IDL) είναι πολύ μεγαλύτερα από αυτά των μεθόδων GC/MS, όμως οι τιμές των ορίων ανίχνευσης (MDL) και των ορίων ποσοτικοποίησης της μεθόδου (LOQ) για τη μέθοδο IC-ESI-MS φαίνεται να είναι συγκρίσιμες.
- Στη μέθοδο GC-NCI-MS, η θραυσματοποίηση των δι-, τρι-, χλώρο-/ βρώμο-, ή μείγματος αυτών στο οργανικό μόριο οδηγεί στο σχηματισμό των αλογόνων (³⁵Cl, ³⁷Cl, ⁷⁹Br and ⁸¹Br) αυξάνοντας έτσι την ευαισθησία και προσφέροντας παράλληλα αύξηση εκλεκτικότητας της μεθόδου, σε σχέση με την GC-EI-MS.

ΧΗΜΙΚΗ ΣΥΣΤΑΣΗ ΚΟΛΥΜΒΗΤΙΚΩΝ ΥΔΑΤΩΝ

Επίπεδα συγκέντρωσης HAAs(5)

HAAs

<u>Κατανομή HAAs(5)</u>

🜌 MCAA 📕 MBAA 🚨 DCAA 🗖 TCAA 📓 DBAA

<u>Πόσιμο νερό-Σύγκριση</u>

<u>Επίπεδα και κατανομή HAAs (Πόσιμα vs. Κολυμβητικά ύδατα)</u>

ΠΟΣΙΜΑ ΥΔΑΤΑ

ΥΔΑΤΑ ΚΟΛΥΜΒΗΤΙΚΩΝ ΔΕΞΑΜΕΝΩΝ

<u>Συμπεράσματα</u>

Για τον προσδιορισμό των HAAs, αναπτύχθηκαν τρεις διαφορετικές και αξιόπιστες μέθοδοι (IC-ESI-MS, GC-EI-MS και GC-NCI-MS). Από αυτές, εξαιτίας των χαμηλότερων ορίων ανίχνευσης, επιλέχθηκε η μέθοδος GC-NCI-MS για τον προσδιορισμό των HAAs σε δείγματα νερού με χαμηλές συγκεντρώσεις HAAs.

8% των δειγμάτων που αναλύθηκαν από την περιοχή της Βαρκελώνης εμφάνισαν συγκέντρωση HAAs(5)>30 μg/L.

Δεν ανιχνεύθηκε σε κανένα δείγμα MIAA.

Στα κολυμβητικά ύδατα παρατηρείται αύξηση των HAAs (710 μg/L) σε σχέση με τα πόσιμα ύδατα (24 μg/L).

<u>ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

- Barron L., Paull B., (2004). "Determination of haloacetic acids in drinking water using suppressed micro-bore ion chromatography with solid phase extraction". Analytica Chimica Acta, 522, 153–161.
- Barron L., Paull B., (2006). "Simultaneous determination of trace oxyhalides and haloacetic acids using suppressed ion chromatography-electrospray mass spectrometry". Talanta, 69, 621-630.
- Domino M.M., Perich B.V., Munch D.J., Fair P.S., (2004). "Optimizing the determination of haloacetic acids in drinking waters". J. Chromatogr. A, 1035, 9–16.
- Loos R., Barcelo D., (2001). "Determination of haloacetic acids in aqueous environments by solid-phase extraction followed by ion-pair liquid chromatography–electrospray ionization mass spectrometric detection". J. Chromatogr. A, 938, 45–55.
- Paull B., Barron L., (2004). "Using ion chromatography to monitor haloacetic acids in drinking water: a review of current technologies". J. Chromatogr. A, 1046, 1–9.
- Roehl R., Slingsby R., Avdalovic N., Jackson P.E., (2002). "Applications of ion chromatography with electrospray mass spectrometric detection to the determination of environmental contaminants in water". J. Chromatogr. A, 956, 245–254.
- Xie Y., 2001. "Analyzing haloacetic acids using gas chromatography/mass spectrometry". Water Res., 35, 6, 1599-1602.
- Zhang X., Minear R.A., Guo Y., Hwang C.J., Barrett S.E., Ikeda K., Shimizu Y., Matsui S., (2004). "An electrospray ionization-tandem mass spectrometry method for identifying chlorinated drinking water disinfection byproducts". Water Res., 38, 3920–3930.