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ABSTRACT: Since the definition of the “12 Principles of Green Chemistry” more than 20
years ago, chemists have become increasingly mindful of the need to conserve natural
resources and protect the environment through the judicious choice of synthetic routes and
materials. The direct activation and functionalization of C−H bonds, bypassing intermediate
functional group installation is, in abstracto, step and atom economic, but numerous factors
still hinder the sustainability of large-scale applications. In this Outlook, we highlight the
research areas seeking to overcome the sustainability challenges of C−H activation: the pursuit
of abundant metal catalysts, the avoidance of static directing groups, the replacement of metal
oxidants, and the introduction of bioderived solvents. We close by examining the progress
made in the subfield of aryl C−H borylation from its origins, through highly efficient but
precious Ir-based systems, to emerging 3d metal catalysts. The future growth of this field will
depend on industrial uptake, and thus we urge researchers to strive toward sustainable C−H
activation.

1. INTRODUCTION

Sustainability is achieved when the needs of the present can be
satisfied without compromising those of the future. In recent
years, the ideals of sustainability have emerged as a dominant
theme in organic chemistry, with a view to the technology
transfer of novel reactions from the lab bench to process plant.
The ideal sustainable transformation eliminates the use of scarce
materials and materials which, through their production or
disposal, represent an environmental hazard or burden. The
design of “environmentally friendly” chemistry goes hand-in-
hand with economic transformations.1,2 For instance, the use of
catalytic reactions, mild conditions, and limiting step-count and
waste typically results in cost savings and cycle-time reduction.
As society seeks to counter resource scarcity and address the
climate emergency, legislative restrictions on the use of materials
perceived to be hazardous or highly polluting are increasing.3−5

In 1998, Anastas andWarner defined the “12 Principles of Green
Chemistry” as “design rules” to make chemical processes more
sustainable (Figure 1). Nowadays, transformations are evaluated
numerically using parameters such as atom economy, E factor,
process mass intensity, and many others.6−17 More recently,
enormous efforts have been made to develop the science of
“lifecycle assessment”the quantitative metrics by which the
total mass and energy inputs and waste outputs of a given
chemical transformation are evaluated for their environmental
impact.18−21 Since then, industrial chemists have led the charge
by compiling important guides on reagent and solvent
selection.22−28

In comparison to the more established cross-coupling
reactions, C−H activation removes the requirement for
prefunctionalization of both partners; as such, C−H activation

has long promised a means to decrease step-count and hence
mass intensity of chemical processes (Scheme 1).29 That said,
the selective cleavage of unactivated C−H bonds remains an
active and comparatively difficult area of academic research.
Consequently, the use of precious metal catalysts in high
loadings, stoichiometric metal-based oxidants, high temper-
atures, and directing group manipulations are often required.
Until now, practical and economic considerations have
presented the major barriers to industrial application;
sustainability considerations are likely to dominate in the years
to come.
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Figure 1. C−H Activation: sustainability trends.
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A great body of work has already sought to address many of
these limitations. Reviews on the subtopics of mild, efficient, and
undirected C−H activation have been published, as well as those
addressing the use of more sustainable solvents, nonprecious
metals, and alternative oxidative systems, but to our knowledge
there has yet to be a thematic overview from the perspective of
sustainability.30−40 In this Outlook, we highlight noteworthy
examples in areas where C−H activation faces its greatest
sustainability challenges. Naturally, many transformations we
have chosen span several such categories; most present at least
one unsustainable aspect. The question is not whether these

reactions are objectively green but rather in which ways do they
represent an advance in sustainability. Our aim is to provide a
cross-section that informs the reader of the fast-growing research
lines in pursuit of sustainable, and thereby applicable, C−H
activation.

2. NEXT GENERATION METAL CATALYSTS
C−H Activation and functionalization has relied heavily on the
ability of precious transition metals to affect diverse catalytic
steps. The sheer cost and price volatility of these elements
disincentivizes large-scale applications. Even if resource scarcity
does not inhibit future use, the supply of such materials may
become subject to geopolitical risk.41 In addition, the low
abundance of precious metals contributes to a significantly
higher carbon footprint in their extraction.42 To initiate a move
away from wasteful precious metal chemistry, many groups are
now focused on developing alternative 3d metal systems and
recoverable, heterogeneous catalysts.
2.1. Adopting 3d Metals. The 3d metals are generally

viewed as inexpensive and less toxic, decreasing the impact of
higher catalyst loadings.38 Promoting their uptake by the
synthetic community depends heavily on expanding the range of
chemistry which can be accomplished by these metals.
A well-known example of a 3d complex is the Fe-centered

White−Chen catalyst, which is able to oxidize unactivated
C(sp3)−H bonds. In the breakthrough work, it was discovered
that the rigidity afforded by the pyrrolidine-pyridine (PDP)
ligand conferred a high degree of regioselectivity based on subtle
electronic differences. The original catalyst system favored
oxidation of tertiary C−H bonds to alcohols over oxidation of
methylene units to ketones (Scheme 2A).43,44 In a later study, a
more substituted PDP complex was disclosed which reverses

this trend by restricting substrate access to the metal center.45

Great efforts have been made to broaden the scope of this
chemistry to molecules representative of biologically active
compounds, for example, by coordinating problematic function-
ality with a Lewis acid.46−48 In one recent paper, interchange of
the Fe center for Mn results in tolerance of basic nitrogen,
halogens, and heterocyclic moieties (Scheme 2B).49

The related nitrenoid chemistry, based on electron-rich
porphyrin (Por) and phthalocyanine (Pc) ligands, has likewise
seen intense development.50,51 White’s 2012 FePc system was
notable for selective, intramolecular allylic C−H amination over
the aziridination favored by earlier Rh systems.52 The group of
Che used an NHC-PorFe catalyst for the preparation of
saturated nitrogen heterocycles from alkyl azides.53 Recently, a
highly functional group tolerant PcMn analogue was disclosed
for intermolecular, benzylic C−H amination; multiple late-stage
derivatizations of biologically active compounds were exempli-
fied (Scheme 3A).54 In parallel, the group of Zhang has led the
development of the corresponding PorCo systems. Chiral
amidoporphyrin ligands have enabled impressive enantioselec-
tive aminations, including the first intermolecular example in

Scheme 1. C−H Activation: Intrinsic Opportunities

The question is not whether
these reactions are objectively
green but rather in which ways
do they represent an advance in

sustainability.

Scheme 2. PDP-Mediated Alkane Oxidations

Scheme 3. Porphyrin/Phthalocyanine-Mediated Amination
and Amidation
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2020 (Scheme 3B).55 In the same year, Chang extended the
concept to intramolecular amidation for the preparation of γ-
lactams from dioxazolones (Scheme 3C).56 The PcFe system is
remarkable for its high activity, activating even primary alkyl
C−H bonds at a catalyst loading of just 0.5 mol % (TON was
47 000 for benzylic C−H bonds).
3d Metals are now well-established in reactions involving the

insertion of C−C double and triple bonds. Early research on
Mn-catalyzed C−H aromatic alkenylation was conducted by
Wang and co-workers. High regio-, chemo-, and stereoselectivity
were achieved, and anti-Markovnikov E-configured olefins were
obtained in high yields using the simple MnBr(CO)5 catalyst
(Scheme 4A).57 Shortly afterward, an imine directing group was
harnessed to provide a Mn-catalyzed route to 3,4-disubstituted
isoquinolines.58

Glorius and co-workers later accomplished a highly selective
synthesis of 1,3-enynes, pyrroles, and furans using MnBr(CO)5
as a catalyst (Scheme 4B).59 Significantly, Rh- and Ru-based
catalysts normally used for coupling 1,3-diynes were not
successful in this transformation. Co has likewise emerged as a
competent metal in C−H addition chemistry. In a recent
example, Ackermann and co-workers reported a selective
domino C−H activation, pyridine migration-annulation se-
quence catalyzed by a pentamethyl cyclopentadienyl (Cp*) Co
complex (Scheme 4C).60 Likewise, this reaction could not be
accomplished by Rh or Ru, underlining the potential of 3d
metals to serve not only as more sustainable alternatives, but in
many cases offering contrasting reactivity. Until now, however,
undirected Mn and Co examples of this type have been elusive.
In contrast, Hartwig and Nakao have pioneered a Ni/NHC-

catalyst system for the atypical, anti-Markovnikov hydro-
arylation of alkenes with arenes (Scheme 5). The authors
demonstrate the presence of stabilizing, noncovalent inter-
actions in the transition state between the bulky ligand and
substrates. This chemistry is all the more remarkable for the high
catalyst TON of 183, translating to a loading of just 0.3 mol %.61

The 3d metals have the potential to match and surpass the
chemistry of the precious transition metals, but it is likely that
further success will depend heavily on advanced ligand design so
that these metal centers can participate in a wider range of
elementary steps. The environmental impact of ligand syntheses

can bear an outsize influence on the environmental burden of a
process.9 Finding efficiencies in the multistep preparation of
ligands represents an additional practical barrier to be overcome
if such chemistry is to achieve mainstream appeal.

2.2. Heterogeneous Systems. The use of heterogeneous
catalysts has warranted attention owing to the ease of removal
and recycling of the catalyst.62,63 Provided metal leaching is
sufficiently low, such systems can render the use of precious
metals more sustainable. The group of Glorius reported several
examples of direct arylation of (hetero)aryls using simple Pd/C,
followed by the first undirected C−H thiolation of electron-rich
heteroarenes by Pd/Al2O3.

64−67 In 2015, Lei and Zhao disclosed
a system for the catalysis of the Fujiwara−Moritani reaction
involving bipyridine bound Pd on mesoporous organosilica
(MPO). Kinetic experiments demonstrated a superior catalytic
activity relative to the corresponding homogeneous system, a
longer lifetime of the catalyst owing to the prevention of Pd(0)
aggregate formation, and the means to perform the reaction in
continuous flow mode (Scheme 6).68

Zhu and co-workers developed a salen-based, hyper-cross-
linked polymer-supported Pd catalyst to carry out C−H
bromination and chlorination. The catalyst exhibited superior
activity in comparison to homogeneous Pd(OAc)2 under the
same conditions. Only trace Pd leaching was detected,
confirming the suitability of poly salen as support material
(Scheme 7).69

Vaccaro and co-workers reported the use of a Mn based
heterogeneous catalyst for the oxidative coupling reaction of
2-aminophenols, O-phenylenediamines, and pyrogallol in
continuous flow (Scheme 8).70 Notably, this catalyst showed
minimal leaching and low contamination of the product, which
was readily purified by crystallization upon cooling of the CPME
reaction solution, avoiding mass and solvent inefficient

Scheme 4. Mn- and Co-Catalyzed C−H Functionalizations

Scheme 5. Ni-Catalyzed Undirected anti-Markovnikov
Addition of Alkenes to Arenes

Scheme 6. Fujiwara−Moritani Reaction Catalyzed by Pd on
Silica

Scheme 7. C−H Bromination Catalyzed by Pd Supported on
a Salen-Based, Hyper-Cross-Linked Polymer
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chromatography. (This solvent is regarded as process-friendly
owing to its hydrophobicity, high boiling point, and low
tendency to form peroxides.) The solvent could be recovered by
distillation and reused, contributing to a very small E factor of
1.4 under continuous flow conditions versus 19 in batch.

3. AVOIDING AND REPLACING STATIC DIRECTING
GROUPS

Most of the time, C−H bond activation is enabled by directing
groups (DGs) that are covalently linked to the substrate
(Scheme 9). A wide variety of functional groups with Lewis basic

properties, for instance, monodentate amides, pyridines, esters,
or imines, as well as bidentate DGs, have been utilized.71 This
coordination expedites C−H activation since it increases the
local concentration of substrate in the proximity of the catalyst as
well as controlling regioselectivity.
Unfortunately, for most valuable substrates, existing function-

ality is not suitable for the facilitation of directed C−H
functionalization, and an existing functional group must be
converted to a DG. Removal of the DG is often less trivial than is
commonly admitted, but is crucial to obtain products of genuine
utility. For example, Sanford was able to demonstrate a Pd-
catalyzed C(sp3)−H arylation of bicyclic amines, which
represent an important class of medicinally relevant compounds,
with successful and efficient DG removal (Scheme 10).72 In later

work, it was found that the addition of picolinic or quinaldic acid
as ligands improved the reactivity of the system and expanded
the scope to the valuable tropane and homotropane cores.73

For high value-structures, it is perhaps possible to make an
exceptional case for so-called static directing groups (SDGs). At
best, the installation and removal of covalent SDGs negate the
step and atom economy potential of C−H activationat worst,
final removal of the DG is either not possible, requires harsh
conditions, or offers low yields. Since SDG removal is likely to be
the final step, this represents a disproportionate resource burden
on a synthesis. SDGs arguably represent the single largest barrier
to the uptake of C−H activation by industry, conflicting with the

Green Chemistry principle of avoiding derivatives. For
fundamental research, SDGs are a necessary evil; realistically,
chemistry of this design is unlikely to find applications unless
high product value and a lack of alternative methodology are
evident.

3.1. Native Directing Groups. In many cases, so-called
native functionality, where a Lewis basic site is already present,
can be harnessed as a DG. For instance, Bannister and co-
workers reported the utilization of primary amines as a native
directing group (Scheme 11A).74 Yu accomplished the site-

selective C(sp3)−H functionalization of N-protected di-, tri-,
and tetrapeptides by making use of bidentate N,O coordination
(Scheme 11B).75 In Merck’s kilo-scale synthesis of Anacetrapib,
Ru ortho-coordination is helpfully provided by a neighboring
oxazoline which forms part of the final active pharmaceutical
ingredient (Scheme 11C).76

In a high-profile example of native functionality exploitation,
Ackermann recently published a Co-catalyzed methylation of a
number of bioactive compounds.77 The addition of a methyl
group is widely recognized to have an outsize influence on
biological activity and physicochemical properties. In this work,
a catalytic system was identified that could transfer a methyl
group to C(sp2) and C(sp3) centers coordinated by a range of
Lewis basic moieties including N-containing heterocycles,
amides, amines, ketones, and aldehydes. The reaction was
then applied successfully to the late-stage functionalization of 22
biologically active compounds, although several required
isomeric separation. A highlight of this work was the selective
monomethylation of paclitaxel, which contains some 47 C−H
bonds (Scheme 12).
Of course, natively directed C−H functionalizations are

highly substrate specific and cannot offer a general strategy for

Scheme 8. Oxidative Coupling of Aminophenol Catalyzed by
Heterogeneous Mn-Based K-OMS-2

Scheme 9. Directing Group Mode of Action

Scheme 10. Arylation of Bicyclic Amines with Removable DG

Scheme 11. Native Heteroatom Directed C(sp3)−H
Arylation

Scheme 12. Co-Catalyzed C−H Methylation of Paclitaxel
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functionalization of each and every C−H bond, especially for
advanced synthetic intermediates.
3.2. Traceless Directing Groups. Recently, attention has

been drawn to the replacement of preinstalled SDGs by more
step-economic alternatives. These strategies allow for the use of
less functionalized substrates. Consequently, a rapid increase in
value and diversity from simple substrates can be achieved. As a
special case of SDGs, traceless directing groups (TsDGs) are
commonly pre-existing coordinating groups that can be
engineered in the C−H bond functionalization of the substrate
and subsequently removed from the product without an
additional step.78

Among the most used TsDGs are carboxylic acids. In
particular, the use of benzoic acid derivatives is convenient,
since they are often inexpensive and commercially available. In
2016, Gooßen accomplished a regioselective C−H hydro-
arylation of internal alkynes with benzoic acid derivatives using a
Ru-based catalyst (Scheme 13).79 Facile liberation of carbon

dioxide (CO2) revealed the product. In the same year, Zhao
published a similar method to convert lignin-derived 4‑hydrox-
ybenzoic acid into the corresponding meta-substituted alkenyl
arene.80

Although removal of the DG can still be achieved in one pot,
often synthesis of the starting material is required. For instance,
Glorius accomplished a Mn-catalyzed annulation with perfect
regioselectivity owing to the presence of a carbonate-based
TsDG on the alkyne (Scheme 14).81

3.3. Transient Directing Groups. In the transient directing
group (TtDG) strategy, DGs are installed as well as removed in
situ. Often the TtDG can be added in catalytic amounts,
rendering this process in theory more resource and step
economic.82 The most common TtDGs are imines formed by
the condensation of amines and carbonyls; examples of
phosphonites and enamines are also known. Zhang exploited
the monodentate and commercially available TtDG 3,5‑bis-
(trifluoromethyl)aniline for the synthesis of 9-fluorenones in a
cross-dehydrogenative coupling (CDC).83

Young and co-workers have reported protocols in which
cheap and abundant CO2 was used as a TtDG. The group
applied this strategy to the C(sp3)−H γ-arylation of primary and
secondary aliphatic amines (Scheme 16) and later to the
C(sp2)−H arylation of primary and secondary benzyl-
amines.84,85 The formation of a carbamate TtDG was suggested

based on mechanistic investigations in which the corresponding
carbamate salt, prepared from a reaction of the amine with dry
ice, was converted to the coupled product without additional
CO2.
Bidentate TtDGs are now common. Yu utilized unfunction-

alized glycine for the C(sp3)−H β-arylation of aliphatic ketones
and C(sp3)−H γ-arylat ion of benzyl ic aldehydes
(Scheme 17A).86

The same group likewise utilized 2-hydroxynicotinaldehyde
as a TtDG group for the oxygenation of free amines
(Scheme 17B).87 In comparison to earlier protocols, the
protection and deprotection of the amine were not necessary,
and a one-step coupling was thus enabled. The same TtDG was
also applied in the fluorination of free amines.88 Sorensen and
co-workers utilized a commercially available orthanilinic acid as
a TtDG for the C−H ortho-methylation or fluorination of
benzaldehydes.89 [N−F]+ salts were used either as the oxidant
or as an electrophilic fluorine source.
Expansion of the concept to chiral TtDGs gives access to

comparatively step and atom economic enantioselective C−H
functionalizations. Among common chiral DGs are amino acids,
amino amides, or chiral amines that form imine intermediates.
Chiral amino acids are often utilized in combination with Pd;
examples for the generation of molecules with central, axial, and
planar chirality have been reported. Recently, Ackermann
accomplished the synthesis of enantioenriched chiral biaryl
and N-aryl pyrroles using simple L-tert-leucine as a chiral TtDG
(Scheme 18).90

Finally, Catellani reaction variants represent noncondensa-
tion examples of TtDG mediated processes. ortho-Directed

Scheme 13. Regioselective C−H Hydroarylation with
Internal Asymmetric Alkynes

Scheme 14. Regioselective Annulation Using a Carbonate
TsDG

Scheme 15. Pd-Catalyzed CDC Using an Aniline TtDG

Scheme 16. C(sp3)−H Arylation Using a Carbamate TtDG

Scheme 17. Bidentate TtDG Mediated C(sp3)−H Arylation
and Alkylation
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amination of aryl iodides was achieved by Dong following an
oxidative addition-carbopalladation directed C−H activation
process (Scheme 19).91

Nevertheless, a common criticism of TtDG reactions is the
requirement for high metal catalyst and organic cocatalyst
loadings, which mainstream applications will need to address.
3.4. Undirected C−H Activation. The area of undirected

C−H activation, in which electronic and steric factors determine
regioselectivity, is an exciting but incredibly challenging subfield.
Unfortunately, in the absence of highly active catalysts, harsh
conditions and high metal loadings are typical. Problematically,
reactions often do not run to completion or give product
mixtures which may require challenging separations.32

The group of White was instrumental in developing the direct
functionalization of allylic C(sp3)−H bonds, presenting an
alternative to the Tsuji−Trost reaction, which requires an allylic
leaving group. Initial work in 2004 revealed that under Wacker
oxidation conditions the presence of DMSO led to linear allylic
acetates from terminal olefins. The adduct of Pd(OAc)2 and a
simple disulfoxide ligand, which gives the alternative branched
products, became known as White’s catalyst (Scheme 20A).92,93

Since then, White and others have intensely developed this
subfield, with related systems enabling intermolecular allylic
amination, alkylation, and Heck-type arylation, and applied
them to the synthesis of natural products.94−98 Furthermore, an
array of methods now exist for highly regio- and stereoselective
transformations.99−102 In one example, medicinally relevant
anti- and syn-1,3 amino alcohols were prepared using
complementary aryl-sulfoxide oxazoline (ArSOX) ligands

(Scheme 20B).103 Unfortunately, most systems of this type
require high Pd loadings and multiple equivalents of
benzoquinone (BQ) type oxidants, presenting considerable
scope for sustainability improvements.
Cp* complexes of the Group IX metals were later harnessed

by Tanaka, Cossy, Blakey, Glorius, and others to accomplish
related allylic C−H arylations, aminations, and aryla-
tions.104−111 A common weakness of these transformations is
found in the product regioselectivity in the absence of nearby
coordinating groups or strong electronic bias. For this reason,
Rovis’ 2020 work, in which allylic amination is guided by very
subtle electronic effects via the σ-framework, is all the more
remarkable (Scheme 21).112 Despite the value of the products

obtained, once again such chemistry is blighted by the high
loading of transition metals required as catalyst and oxidant as
well as frequently environmentally hazardous solvents, such as
1,2-dichloroethane (DCE).
Other precious metal systems are known with significantly

better efficiency. In 1999, Fujiwara published an oxidative Heck
reaction giving styrene-type products with catalyst loadings as
low as 0.2% (Scheme 22A).113 Since then, Stahl was able to show

that the addition of weakly coordinating ligands increases the
activity of a Pd system used for CDC, enabling improvements in
the industrial synthesis of important polymers (Scheme
22B).114,115 In Hong’s direct arylation, the rigid, planar diimine
ligand is thought to allow the reaction to proceed with a TON of
up to 290 (Scheme 22C).116

Although exciting developments in undirected C−H
activation are forthcoming, it is likely that SDGs will still
dominate in the short-to-medium term. In the meantime, more
and more groups are exploring the possibilities of traceless and
transient DGs. A summary of directing strategies, including a

Scheme 18. Atroposelective C−H Activation

Scheme 19. Transient Norbornene-Directed Amination

Scheme 20. Pd-Catalyzed Allylic Functionalization

Scheme 21. Rh-Catalyzed Allylic Functionalization

Scheme 22. Low-Loading Pd-Catalyzed Examples of
Undirected C−H Activation
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comparison of their relative step-counts, is given below (Scheme
23).

4. MODERN OXIDATION STRATEGIES
The coupling of C−H bonds and nucleophiles is among the
most common of C−H functionalizations. A general such
catalytic cycle consists of four steps (Scheme 24): C−H

activation (1), functionalization of the carbometallic inter-
mediate (2), reductive elimination (3), and finally reoxidation of
the metal center (4). Usually, this reoxidation is carried out
using (super)stoichiometric oxidants, often outweighing the
inherent virtue of catalysis.
Ag(I) and Cu(II) salts are the most commonly used transition

metal oxidants. These salts are typically expensive, possess high
molecular weights, andmay pose safety hazards (Table 1). Their
consumption also produces quantitative, potentially toxic metal
waste. Organic oxidants, such as BQ, may be less expensive but
still contribute significantly to the E factor. There is therefore
high interest in avoiding stoichiometric oxidants.
4.1. Internal Oxidants. One strategy involves the use of a

pre-installed, internal oxidant that also serves as a DG
(Scheme 25).117,118 Often these moieties consist of cleavable
N−O and N−N bonds, originating from hydroxylamine and
hydrazine derivatives produced on ton scale via efficient,
established processes. Transformations using these moieties
are often milder than their metal oxidant driven alternatives.
In 2009, the group of Wu revealed thatN-oxidized quinolines

could successfully direct Pd-catalyzed C2 alkenylation with
acrylates (Scheme 26A).119 The following year, Hartwig

published an efficient, Pd-catalyzed, oxime ester-directed
synthesis of indoles.120 Later, Rovis was able to apply the
concept to the syn-carboamination of alkenes using a bulky Cp*-
type Rh complex. After undergoing solvolytic ring-opening, the
N-eneoxy phthalimide starting material is proposed to act as a
bidentate directing group as well as offering an oxidizable N−O
bond for closure of the catalytic cycle (Scheme 26B).121 In 2016,
the group of Glorius disclosed a synthesis of amino acid esters
mediated by a Cp*Co system (Scheme 26C).122

4.2. Molecular Oxygen. The use of molecular oxygen (O2)
is attractive for obvious reasons: O2 or air is readily available,
nontoxic, and inexpensive; water is the only byproduct.123

Unfortunately, this method is normally limited to metal systems
with the appropriate redox potential. In 2009, Yu demonstrated
that a bulky 2,6-substituted pyridine ligand both promotedmeta-
regioselectivity in a Fujiwara−Moritani reaction and facilitated
the reoxidation of Pd(0) to Pd(II) within the catalytic cycle.124

Scheme 23. Greener Alternatives to Static DGs

Scheme 24. General C−H Activation Mechanism Using
Stoichiometric Oxidants

Table 1. Properties of Common C−H Activation Oxidants

oxidant Mr cost/mol (US $)a major issue

NFSI 315.14 4223 atom economy
PhI(TFA)2 430.04 1450 atom economy
Ag2O 231.74 973 precious metal
AgOAc 166.91 883 precious metal
PhI(OAc)2 322.10 412 atom economy
Cu(OAc)2 181.63 303 metal waste
oxone 307.38 163 waste
K2S2O8 270.32 128 waste
tBuOOH 90.12 51 waste

BQ 108.09 39 waste
aSource: Sigma-Aldrich, accessed October 2020. Batch size chosen
was closest to 100 g; reagent grade or most similar.

Scheme 25. General C−H Activation Mechanism Using a
Preoxidized DG

Scheme 26. C−H Functionalizations Using Preoxidized DGs
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Fagnou acknowledged the problematic use of stoichiometric
Cu(OAc)2 in an early Cp*Rh mediated indole synthesis and
demonstrated the reaction could become cocatalytic in Cu using
O2 as the terminal oxidant with a minor modification of the
reaction conditions (Scheme 27).125

Cheng and co-workers later disclosed a synthesis of
isoquinolinones requiring only air as the O2 source.
Furthermore, the products precipitated readily from solution,
avoiding resource-intensive purification. The authors applied
this method to preparation of the pharmaceutical agent ISQ-1 in
82% yield (Scheme 28A).126 Ackermann reported a twofold

C−H functionalization between benzoic acids and alkenes.
C−H Activation was mediated by a Ru biscarboxylate catalyst
with O2 as the terminal oxidant (Scheme 28B).127

4.3. Photoredox Catalysis. A further method that has
drawn attention is the use of photoredox chemistry. In this case,
electrons are transferred to a photoredox catalyst, thus
reoxidizing the C−H activating metal center. The photoredox
catalyst is then regenerated by a terminal oxidant. Although the
use of organic terminal oxidants is preferable to the generation of
metal waste, the best examples involve the reduction of O2 to a
superoxide anion and ultimately water (Scheme 29).
Van d’Eycken and co-workers established a procedure for a

selective C2-acylation of indoles using a visible-light photoredox

catalyst for the reoxidation of Pd. The reaction procedure was
compatible with number of functional groups and was applied to
aromatic, primary, and secondary aliphatic aldehydes. The
combination of continuous flow and photochemistry allowed a
significant decrease in the reaction time and photocatalyst
loading (Scheme 30).128

Sundararaju and Rueping developed a mild protocol for
C−H/N−H annulation using a dual catalytic approach and O2
as the terminal oxidant. Co(acac)2 mediated the C−H
activation, while Na2[Eosin Y] functioned as the electron
transfer agent (Scheme 31).129

In an exciting recent development, Chang and co-workers
detailed a bifunctional catalyst containing both a Cp*Rh center
and an acridinium moiety. Internal oxidation of the metal center
by the photosensitizing module expedites the reductive
elimination step. A cocatalytic Cu salt and an organic terminal
oxidant complete the catalytic cycle (Scheme 32).130 Develop-
ments beyond this proof-of-concept may offer a further
alternative to stoichiometric metal oxidants.

4.4. Metallaelectrocatalysis. The upscaling of photo-
chemical reactions is often challenging. Another drawback of
photoredox catalysts is the use of mostly preciousmetals, such as
Ir, as photocatalysts, as well as their discrete redox states. To
access differing redox potentials, chemical modifications via
resource-demanding, multistep synthesis are necessary. Surpass-
ing these shortcomings, the field of metallaelectrocatalysis has
emerged.36,40,131−133 Redox potentials can be adjusted con-
tinuously, for instance, by a potentiostat. This allows broader
functional group tolerance and a decreased need for complex

Scheme 27. Indole Syntheses with Stoichiometric and
Catalytic Cu Oxidant

Scheme 28. Rh-Catalyzed C−H Alkenylation with Air as the
Terminal Oxidant

Scheme 29. General C−H Activation Involving Catalyst
Photooxidation, with O2 as Terminal Oxidant

Scheme 30. Photoredox Enabled C2-Acylation of Indoles

Scheme 31. Sequential C−C and C−N Bond Formation
Catalyzed by a Co and a Photoredox Catalyst

Scheme 32. An Integrated Catalyst for C−H Activation and
Photooxidation
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ligand systems. Molecular hydrogen is generated as a potentially
useful byproduct (Scheme 33).

The applicability of Co, Ni, and Cu electrochemistry to C−H
functionalization has been demonstrated extensively by
Ackermann since 2017.90,134−139 In a recent protocol, a
challenging C−C/C−N bond formation with a potentially
sensitive allene was accomplished under mild conditions in the
biosolvent glycerol us ing s imple Co(OAc)2 sa l t
(Scheme 34A).140 Furthermore, electricity generated in house

from wind and solar energy was exploited. Building on
Ackermann’s earlier work, Lei and co-workers used electro-
chemistry for the amination of (hetero)arenes including aryls,
furans, and thiophenes, up to gram scale (Scheme 34B).141,142

The replacement of metal-based oxidants by greener methods
has accelerated in recent years; intensive work in this field has
established applicable and sustainable alternatives (Figure 2).
While internal and organic oxidants avoid the use of transition
metals, these strategies are still responsible for stoichiometric
waste. Meanwhile, the use of O2, photoredox catalysis and
electrochemistry offer sustainable alternatives with benign
byproducts. These methods have already been applied to a
range of substrates and proven compatible with 3d metals and
biosolvents.

5. CHOOSING GREENER SOLVENTS
Organic solvents are almost always the largest weight
component of reactive chemistry and purification. The environ-
mental impact of solvents has been the topic of extensive
industrial interest. Indeed, the CHEM21 consortium of major
pharmaceutical companies have released multiple solvent
selection guides to aid sustainable process development, which

quantify solvent attributes such as carbon footprint, reactive
hazards, and human health impact.22,23,25−28 Choice of solvent
(or mixture) is often dictated by themechanism of the chemistry
at hand and by coupling partner solubility or compatibility. In
many cases, greener solvents are too quickly overlooked. For
example, in C−H activation chemistry involving heterocycle
preparation, unsustainable solvents, such as 1,2-DCE,HFIP, and
TCE are common (Table 2); many greener alternatives have
been shown to be practical under the right conditions.143

It is appreciated that the environmental impact of solvents is
more limited in terms of scale, and receives less attention, within
academia than in industry; novel reactions are optimized for
yield (or selectivity). Likewise, academic researchers likely do
not have ready access to the many emerging biosolvents
screened in industry. Nevertheless, the inclusion of sustainable
alternatives in deviation tables, even if they do not provide the
most optimal results, would provide starting points for applied
researchers, including for emerging machine learning-based
reaction optimization.144,145 Principle component analysis
(PCA) is a frequently used method to find compatible
alternative solvents based on physicochemical properties.146

The investigation of the properties of solvent mixtures remains
an under-researched area.

5.1. Biosolvents. Biomass-derived solvents, commonly
referred to as biosolvents, are increasing in popularity. In
comparison to traditional solvents, they typically have lower
toxicity and show higher biodegradability. 2-MeTHF is now a

Scheme 33. A Generalized Mechanism of C−H Activation
Involving Anodic Oxidation

Scheme 34. Cobalta-Electrocatalyzed C−C/C−N Bond
Formation

Figure 2. Pyramid of oxidation method sustainability.

Table 2. Common Solvents used in C−H Activation,
Associated Hazards, and Environmental Burdensa

solvent cost/L (US $)b hazardb environment

HFIP 1170 a, e f, g
TFA 492 a g
THF 119 a, b, c g
DCE 116 a, b, c, d e, f, g
DMF 109 a, b, c, d
NMP 104 a, c, d
1,4-dioxane 92 a, b, c g
CH2Cl2 67 a, b e, f

aa. Toxicity. b. Cancer risk. c. Flammable. d. Fertility risk. e. Severe
greenhouse gas. f. Ozone depletory. g. Environmentally persistent.
bSource: Sigma-Aldrich, accessed October 2020. Batch size chosen
was closest to 1 L; solvent grade.
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commonly adopted green alternative and has been used as a
substitute for THF, 1,4-dioxane, DCE, and others.147 Its low
miscibility in water facilitates purification by organic-water
phase separations. Ackermann and co-workers chose 2-MeTHF
in their mild C−H activation of allenes using a simple Fe
phosphine catalyst (Scheme 35).148

Berteina-Raboin and co-workers published the first C−H
activation protocol in which eucalyptol was used as a green
solvent (Scheme 36).149 Eucalyptol is the main constituent of

eucalyptus essential oil (up to 90%), is immiscible with water,
and exhibits low toxicity. On the basis of physical properties,
such as its polarity, the authors postulate that eucalyptol may
rival 2‑MeTHF; it has a comparable cost and shows a lower
tendency to form radicals. As a byproduct of the global paper
industry, the potential supply of this solvent is estimated to be in
the millions of tons; it is also a precursor for the hydrocarbon
substitute cymene.150

Polyethylene glycols (PEGs) are sugar-derived, low volatility,
polar liquid polymers with diverse physical properties.
Molecular weights ranging from 300 to 10 000 000 g/mol are
commercially available. Bhanage and co-workers performed an
alkyne annulation via directed C−H/N−H activation using a
homogeneous Ru(II)/PEG-400 catalytic system. Remarkably,
the catalyst was recovered by extraction during product isolation
and reused four times with negligible impact on yield
(Scheme 37).151

γ-Valerolactone (GVL) is another sugar-derived solvent that
is often considered as an alternative to polar aprotics like DMF
or MeCN. Vaccaro and co-workers accomplished a regiose-
lective C−H functionalization of 1,2,3-triazoles in GVL under
continuous flow (Scheme 38).152 Remarkably, the solvent could
be readily recovered by distillation and reused. The product was
purified by recrystallization in acetone and water, contributing
to a low overall E factor of 23.9. This value was significantly

smaller than for previously reported protocols for the synthesis
of triazoles. Though the exact figures have to be taken with care,
this example underlines the importance of solvent in the mass
efficiency of chemical processes: significant improvements can
be made by recycling the solvent or by operating under highly
concentrated conditions.
Although many are skeptical regarding the cost and supply of

biosolvents, with increasing demand the wholesale cost is
expected to decrease, especially for large-scale applications
(Table 3). We do not discount the role of the more recognized
green solvents, which may or may not be obtained from
biological sources, such as ethanol and ethyl acetate.

5.2. Aqueous and Solvent-Free Reactions. Provided
solvent is not required for heat-transfer purposes, neat chemistry
has the potential to offer a sustainability advantage by lowering
the E factor, as well as aiding low activity catalytic systems. For
example, in 2017 a Mn-catalyzed aryl allylation was accom-
plished by Glorius and co-workers under solvent-free con-
ditions.154 Sequential C−H and C−C/C−X bond activation led
to the synthesis of diverse, valuable products.
The use of water appears attractive for industrial purposes,

since it is inherently safe, poses no health hazard, and is of course
highly abundant. An example by Nallasamy is the tandem
C−H/N−H activation of acetanilide in water with an active Pd
pincer complex (Scheme 39).155 In another preparation of an
Anacetrapib intermediate (recall Scheme 11C), a water-soluble
Ru formate based system “MCAT-53” was used to carry out the
directed arylation in 73% yield with precipitation of the product
from solution. Following an organic wash, the aqueous layer
could be reused.156

Notwithstanding, a significant note of caution must be
attached to claims that the use of water is always sustainable.

Scheme 35. Iron-Catalyzed C−H Activation of Allenes in
2‑MeTHF

Scheme 36. Direct C−H Arylation in Eucalyptol

Scheme 37. Ru-Catalyzed Annulation Reaction in PEG-400

Scheme 38. Intramolecular C−H Functionalization of
1,2,3‑Triazoles in GVL

Table 3. Common Biosolvents, Miscibility, Costs, and
Sources

solvent
cost/L
(US $)a

water
miscible substitutes source153

GVL 571 yes polar aprotics sugars
2-MeTHF 235 no ethers,

chlorinated
sugars

eucalyptol 218 no various paper industry
cyrene 191 yes polar aprotics cellulose
limonene 144 no alkanes citrus waste
ethyl
acetate

71 no esters sugars or
petrochem

ethyl lactate 68 yes esters starch
cymene 57 no alkanes, aryls paper industry
PEG-400 43 yes various sugars
ethanolb 40 yes alcohols sugars or

petrochem
aSource: Sigma-Aldrich, accessed October 2020. bDenatured. Batch
size chosen was closest to 1 L; solvent grade.
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Following isolation of the products, the aqueous waste stream
must be safely disposed of. If this cannot be remediated by other
means, incineration of the waste is an endergonic process.
C−H Activation is not unique in its hitherto reliance on a

narrow range of fossil-fuel derived and chlorinated solvents; as
organic chemistry adopts bioderived materials more widely, it is
likely that the application of green solvents will become
commonplace within this field.

6. CASE STUDY: ARENE C−H BORYLATION
6.1. Origins. In the absence of general and direct systems for

many important C−H transformations (e.g., arylations,
alkylations, oxidations, halogenations), aryl boron species are
highly valued synthetic intermediates. Before the establishment
of C−H borylation, such compounds could only be prepared by
stoichiometric organometallic chemistry or the Miyaura
borylation of aryl halides (Scheme 40A).157 The group of
Smith pioneered the first undirected Ir-catalyzed C−H
borylations for installation of the highly versatile bis-
(pinacolato)borane (Bpin) handle (Scheme 40B).158,159

Although this early work suffered from high metal loading and
poor regioselectivity, this was shortly followed a much improved
system involving bulkier, more stable bidentate phosphine
ligands such as 1,2-bis(diphenylphosphino)ethane (dppe)
(Scheme 40C).160 Simultaneously, the eponymous Ishiyama−
Miyaura−Hartwig (IMH) catalyst, consisting of an Ir(I)
cyclooctadiene precatalyst and the 4,4′-di-tert-butylbipyridine
ligand (dtbpy), was shown to be capable of installing the Bpin
unit under mild conditions with unrivalled functional group
tolerance.161 The somewhat bulky ligand is responsible for the
steric control of the reaction, selectively delivering the products
from a 1:1 ratio of boron units and starting arenes
(Scheme 40D).162 From an early stage, it was clear the novel
system could offer a clear step and atom economy advantage
over established methods for aryl boronic ester synthesis, in
addition to new product substitution patterns.
6.2. Development and Applications. Guided by increas-

ing mechanistic understanding,163−165 further exploration of the
IMH system led to adoption of the ligand 3,4,7,8-tetramethyl-
phenanthroline (tmphen), scope-expansion, and sustainability
improvements in the reaction conditions.166−170 For example, in
2013 the groups of Krska, Maleczka, and Smith conducted
extensive high-throughput screening-optimization from which
they elucidated subtle relationships between order-of-addition,
precatalyst choice, temperature, and solvent. Using this
knowledge, they were able to affect competent borylation
systems requiring just 0.25 mol % Ir loadings with simulta-
neously high boron economy. It was shown that polar solvents,
including the biosolvent 2-MeTHF, are amenable to this
chemistry (Scheme 40E).171 In 2019, Hartwig and co-workers
elucidated that the often superior performance of phenanthro-
line-based systems over the classic IMH dtbpy catalyst is owing
to greater binding stability and hence catalyst lifetime.172 In a
similar vein, Ozerov and co-workers revealed a strikingly active

catalyst based on a POCOP ligand, exhibiting a turnover
number (TON) in excess of 20 000 (Scheme 40F).173

The compatibility of this chemistry with downstream
chemistry in “telescoped” sequences, avoiding potentially
wasteful purification, has facilitated its take-up in total syntheses.
In 2011, Hartwig harnessed a two-step, one-pot borylation-
bromination protocol developed in his laboratory to prepare a
key intermediate in his route toward (−)-Taiwaniaquinone H
and (−)-Taiwaniaquinol B.174,175 In Baran’s total syntheses of
Verruculogen and Fumitremorgin A, use of the simple,

Scheme 39. Aqueous Tandem C−H/N−H Activation Scheme 40. Evolution of Precious-Metal-Catalyzed Aryl
Borylation
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unsubstituted phenanthroline ligand was shown to be optimal
for the 10 g borylation of a key indole intermediate.176 Boger
affected a dual 3,5-diborylation on 20 g scale in his preparation
of the critically important antibiotic vancomycin (Scheme
40G).177 There are now multiple process chemistry examples of
C−H borylation in the public domain, revealing the industrial
uptake of this technology. In Merck’s preparation of Dorivirine,
a 75 kg scale borylation-oxidation sequence rendered key
intermediate 3-bromo-5-iodophenol in 94% yield over two steps
(simple bipyridine was used as an adequately performing, low-
cost ligand).178 Pfizer used the tmphen ligand to obtain 19 kg of
a borylated nicotine intermediate.179 AstraZeneca carried out a 6
kg borylation of a key pyridine intermediate using just 0.25% Ir
loading to supply their Phase IIA trial of the A2AR agonist
AZD4635 (Scheme 40H).180,181

6.3. Future Directions. The accumulated knowledge of the
past 20 years, in terms of increased catalyst activity and solvent
range, suggests there are likely still gains to be found in the
effectiveness of this system. This said, one hugely valid criticism
remains: the high cost and scarcity of Ir, which may be offset in
the cases of highly efficient or heterogeneous, recyclable
systems.182−187 The development of undirected 3d metal-
based systems, which may replicate and complement Ir
borylation chemistry, is therefore an exciting area of growth.
Ni,188−190 Fe,191 and dual-metal192 systems have been
developed, but the most general of the new catalysts seem to
be Co based, of which the work of Chirik is best known
(Scheme 41).193−198 Use of the bis(phosphomethyl)pyridine

(PNP) family of ligands was shown to act by providing a suitably
electron-rich environment for the Co center to emulate Ir-like
behavior. A more user-friendly, air-stable terpyridine-based
precatalyst has been disclosed.199 The discovery of yet more
active, faster 3d systems which can be deployed industrially is a
highly anticipated development.

7. SUMMARY AND CONCLUSION
In this Outlook, we have sought to highlight active and growing
branches of research in C−H activation which exemplify aspects
of sustainability.We have showcased the emergence of abundant
3d metal systems, such as Co, Mn, Fe, Ni, and heterogeneous
systems as competent and complementary catalysts. We have
discussed elegant transformations that do not require coordinat-
ing functionality, or can exploit native DGs.We have highlighted
exciting, modern alternatives to transition metal-based oxidants
including photoredox and electrochemical methods, and
reiterated that the selection of green reaction media contributes

substantially toward the mass intensity of a transformation. We
hope that researchers will be motivated to explore and
understand the sustainability potential of new C−H trans-
formations. With the intention of making environmental
considerations from the beginning, we pose ourselves the
following questions:

(1) What is the efficiency of my catalyst? Can I provide an
alternative, low-loading optimization with an acceptable
yield? Is there a high-abundancy metal capable of the
elementary steps required by my transformation?

(2) What is the environmental impact of my solvent choice?
Are there commercially available green solvents (or
mixtures) available which I may not have considered, that
may give similar results? Can I simply increase the
reaction concentration?

(3) Can I minimize or substitute metal-based oxidants with a
modern alternative?

(4) Can I avoid using a DG? Is it genuinely straightforward to
remove an SDG; are my products useful if not? Would a
novel directed reaction offer a real advantage over an
established classical method?

(5) How robust is my chemistry? Are strictly dried solvent
and inert atmosphere really necessary? Can I use air-stable
catalysts and additives? Would exploring the sensitivity of
my conditions lead to better reproducibility and fewer
wasted resources?200

(6) Can I quantitatively estimate the environmental burden of
my transformation, for comparison and targeted improve-
ment?

We envisage that in the future, by combining several green
design elements, newly published reactions will offer promising
starting points for applied research. Until now, “greenness” has
historically taken a back seat to reaction novelty. Nevertheless,
we are convinced that cumulative advances in sustainability will
finally enable the industrial potential of C−H activation to be
fulfilled.
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