
(c)

Fig. 9 (cont.). (c) Hypothetical structure $\mathrm{R}_{11} \mathrm{X}_{17}$.
restrictions that all edges of the pentagons should be long, that the rectangles should have two long edges, and that the triangles have only one long edge. The space group for the structure in Fig. $9(b)$ is Amam ($D_{2 h}^{17}$), $Z=100$; the composition is $\mathrm{R}_{2} \mathrm{X}_{3}$. In Fig. $9(c)$ the arrangement of the pentagons along the \mathbf{X} axis is like the arrangement of the VF polyhedra in
$\beta-\mathrm{Mg}_{2} \mathrm{Al}_{3}$ along the [110] axis (Samson, 1968). The composition is $\mathrm{R}_{11} \mathrm{X}_{17}, Z=224$, space group Amam. Since there is no obvious way to divide these structures into strips, the derivation of code names becomes arbitrary and cumbersome. It is clear that many more structures of this type with larger cells could be derived. Both the P \& S and the K coding scheme are clearly inadequate to describe these structures.

References

Kripyakevich, P. I. (1970). Kristallografiya, 15, 690. [Sov. Phys. Crystallogr. (1971). 15, 596.]
Kripyakevich, P. I. \& Yarmolyuk, Ya. P. (1970). Dop. Akad. Nauk Ukr. RSR, A 32, 948.
Kripyakevich, P. I. \& Yarmolyuk, Ya. P. (1971). Bcecoгзная Конферениия по Кристаллохимии Интерметаллических Соединений, Тезисы докладов, Львов. s. 6.
Manor, P. C., Shoemaker, C. B. \& Shoemaker, D. P. (1972). Acta Cryst. B28, 1211.

Pearson, W. B. \& Shoemaker, C. B. (1969). Acta Cryst. B25, 1178.
Samson, S. (1968). In Structural Chemistry and Molecular Biology, p. 687. Edited by A. Rich \& N. Davidson. San Francisco: Freeman.
Shoemaker, C. B. \& Shoemaker, D. P. (1969). In Developments in the Structural Chemistry of Alloy Phases, p. 117. Edited by B. C. Giessen. New York: Plenum Press. Wells, A. F. (1968). Acta Cryst. B24, 50.
Yarmolyuk, Ya. P., Kripyakevich, P. I. \& Hladyshevskir, E. I. (1970). Kristallografiya, 15, 268. [Sov. Phys. Crystallogr. (1970). 15, 226.$]$

Acta Cryst. (1972). B28, 2965

The Crystal Structure of Tin(II) Iodide

By R. A. Howie, W. Moser* and I. C. Trevena
Department of Chemistry, University of Aberdeen, Old Aberdeen AB9 2UE, Scotland

(Received 24 May 1972)

A complete structural analysis of $\operatorname{tin}(\mathrm{II})$ iodide $\left(\mathrm{SnI}_{2}\right)$ has been carried out on the basis of three-dimensional X-ray diffraction data and refined to an R value of 0.049 . The crystals are monoclinic, space group $C 2 / m$, with $a=14 \cdot 17, b=4.535, c=10.87 \AA$, and $\beta=92 \cdot 0^{\circ}$. The compound is shown to possess a unique AX_{2} layer structure in which the metal atoms occur in two distinct sites. Two-thirds of the tin atoms occupy sites similar to those in $\mathrm{SnCl}_{2}\left(\mathrm{PbCl}_{2}\right.$ type). The remaining tin atoms are in PdCl_{2}-type chains which interlock with the PbCl_{2}-type part of the structure to give almost perfect octahedral coordination. Significant $\mathrm{Sn}-\mathrm{I}$ distances are all in the range $3 \cdot 00-3 \cdot 25 \AA$. Mössbauer spectroscopy fails to reveal the true complexity of the structure.

Introduction

Detailed studies on the preparation of $\operatorname{tin}($ II) iodides (to be published elsewhere) afforded crystals of SnI_{2} suitable for single-crystal X-ray diffraction. Structural

[^0]analysis was carried out as part of a wider programme to extend the data on the crystal chemistry of tin (II). Aylett (1969) suggested that SnI_{2} and PbI_{2} have the same structure (CdI_{2} type), while Belotskii, Antipov, Nadtochii \& Dodik (1969) found that SnI_{2} and PbI_{2} form a continuous series of solid solutions of PbI_{2} $\left(\mathrm{CdI}_{2}\right)$ structure, pure SnI_{2} having a 'different structure'.

Experimental

Crystalline tin(II) iodide was prepared from tin metal $(10 \mathrm{~g})$ and iodine $(14 \mathrm{~g})$ heated under reflux in $2 M$ hydrochloric acid (90 ml). Further tin was added in approximately 0.5 g portions until the solution became very pale yellow and the freshly added tin retained its bright appearance for 10 min after addition, indicating that the solution was free from $\operatorname{tin}(I V)$. The solution was filtered rapidly into a conical flask warmed in a boiling water bath, and $\operatorname{tin}(\mathrm{II})$ iodide allowed to crystallize undisturbed as bath and flask cooled overnight to room temperature. To prevent oxidation to $\operatorname{tin}(\mathrm{IV})$, the $\mathrm{tin}(\mathrm{II})$ solution was maintained under an atmosphere of oxygen-free nitrogen, both under reflux and during cooling. The product was filtered off, washed with water containing a trace of hydrochloric acid, and dried in vacuo over potassium hydroxide and silica gel. Bulk analyses for stannous and total tin and iodide confirmed its identity and purity.

Crystal data

Tin(II) iodide $\left(\mathrm{SnI}_{2}\right)$ was obtained as brilliant red needles, elongated along [010]. The system is monoclinic, $a=14.17 \pm 0.05, b=4.535 \pm 0.016, c=10.87 \pm$ $0.04 \AA$, and $\beta=92 \cdot 0 \pm 0 \cdot 2^{\circ}$. The unit-cell dimensions were refined using powder data (spacings for values of 2θ up to 60°) obtained on a Philips powder diffractometer type PW $1050 / 1$ scanning at $2^{\circ} 2 \theta$ per min with filtered $\mathrm{Cu} K \alpha$ radiation and silicon as an internal standard (Table 1). Equi-inclination Weissenberg photographs for the layers $k=0,1,2$ and 3 were found to exhibit the systematic absences $h k l$ absent for $h+k=$ $2 n+1$, and no others. Hence the space group is $C 2$, $C m$ or $C 2 / m$. The formula weight $\left(\mathrm{SnI}_{2}=372 \cdot 52\right)$ and six formula units per cell give an X-ray density of $5.34 \mathrm{g.cm}^{-3}$, compared with the measured value (displacement of benzene) of $5 \cdot 29 \mathrm{g.cm}{ }^{-3}$.

Intensity data

Intensity data for the layers $h, 0-3, l$ were obtained using a Hilger and Watts Y-190 linear diffractometer, with molybdenum radiation and a zirconia filter. Since SnI_{2} was known to be susceptible to atmospheric oxidation, the crystal used for intensity measurement was encapsulated in Canada balsam. To minimize the exposure of the crystal to radiation (which accelerates its decomposition) the balanced filter facility of the diffractometer was not employed. Instead, four measurement cycles were made for each reflexion.

Nett counts were extracted from the diffractometer data, using the program of North (1964), which applies an empirical absorption correction to the data for any given layer as a function of ω (the angle of rotation of the crystal at which the various reflexions occur). The correction factors are derived from the variation in the measured intensity of an axial reflexion (in this case 020) as the crystal is rotated.

Variation of intensity due to decomposition was

Table 1. Indexed powder diffraction pattern for tin(II) iodide (Maximum $2 \theta=60^{\circ}$.)

$d \text { (obs) }$ (\AA)	I/Io	d (calc)	Index
7.08	15	7.08	200
$6 \cdot 05$	15	6.03	$20 \overline{1}$
$5 \cdot 83$	40	$5 \cdot 84$	201
$4 \cdot 395$	20	$4 \cdot 384$	$20 \overline{2}$
$3 \cdot 620$	35	$3 \cdot 620$	003
$3 \cdot 540$	40	$3 \cdot 540$	400
$3 \cdot 400$	21	$3 \cdot 401$	401
$3 \cdot 370$	22	$3 \cdot 360$	112
$3 \cdot 330$	40	$3 \cdot 332$	401
$3 \cdot 274$	100	$3 \cdot 270$	$20 \overline{3}$
$3 \cdot 274$	100	$3 \cdot 268$	310
$3 \cdot 170$	88	$3 \cdot 179$	203
3.090	40	$3 \cdot 109$	311
$3 \cdot 023$	22	3.014	$40 \overline{2}$
2.913	9	2.919	402
$2 \cdot 822$	22	$2 \cdot 830$	312
2.745	24	2.759	113
2.714	11	2.715	004
$2 \cdot 585$	10	2.576	403
2.502	18	2.506	204
2.488	18	2.485	403
$2 \cdot 449$	6	2.456	$31 \overline{3}$
2.356	7	2.359	511
$2 \cdot 292$	40	$2 \cdot 290$	601
$2 \cdot 235$	12	2.221	$51 \overline{2}$
$2 \cdot 199$	70	$2 \cdot 193$	602
$2 \cdot 164$	40	2.172	512
$2 \cdot 159$	30	$2 \cdot 157$	220
$2 \cdot 137$	28	$2 \cdot 137$	602
2.102	14	$2 \cdot 111$	221
		2.097	205
2.054	5	2.057	205
2.032	6	2.029	$51 \overline{3}$
2.016	10	2.012	$22 \overline{2}$
1.967	16	1.974	513
1.943	4	1.946	603
1.927	6	1.932	115
1.888	6	1.885	42 I
1.888	6	1.881	405
1.846	11	1.844	223
1.824	10	1.823	405
1.811	8	1.811	711
		1.770	514
1.771	10	1.773	800
1.762	10	1.766	712
1.740	10	1.739	206
1.704	5	1.700	$42 \overline{3}$
			802
1.667	9	1.667	713
$1 \cdot 667$	9	1.666	802
1.639	20	1.635	515
$1 \cdot 601$	4	$1 \cdot 600$	316
1.587	7	1.589	406
1.570	14	1.571	605
1.565	10	$1 \cdot 568$	025

monitored on a group of reference reflexions measured at the beginning, middle, and end of the data for each layer. Scale factors of $0.71,0.8065,1 \cdot 0$, and 1.10 for $k=0,1,2$ and 3 respectively were applied accordingly to correct for decomposition. It was found also that

Fig. 1. Tin(II) iodide, projection on (010). Double and single circles are tin and iodine atoms respectively. Atom numbering is as in the text and Table 4. Subscript values are y coordinates in units of $b / 100$. Single lines joining atoms represent tin-iodine contacts between atoms in the same layer perpendicular to b. Double lines indicate contacts between tin and iodine atoms in adjacent layers.
decomposition had destroyed the expected equivalence of some reflexions. Consequently, only reflexions with intensities at least three times the background count were accepted, and equivalent reflexions were averaged only if the counts agreed to within 20%; otherwise the larger intensity was accepted. In all, 234 independent intensities were obtained and converted to structure amplitudes in the usual way.

Computation

All calculations were carried out on an Ellictt 803B computer. Intensity reduction, Fourier summation, and bond lengths and angles programs were made available by Daly, Stephens \& Wheatley (1963). The block-diagonal least-squares program (PBRM 3/4) was lent by Dr Gareth Mair, formerly of the Royal Institution. For each atom refined this program uses a 3×3 matrix for positional parameters and either a 1×1 or 6×6 matrix for thermal parameters. A 2×2 matrix takes account of the interaction of scale and overall isotropic temperature factors. The weighting scheme used throughout this refinement was $w=$ $1 /\left[1-\left(K F_{o}-b\right)^{2} / a^{2}\right]$, where a and b had the values 120 and 200 respectively, on the same scale as $K F_{o}$. The errors associated with the positional parameters are expressed as variances and covariances, which are the appropriate elements of the inverse normal equations matrix $\left(a_{i j}^{-1}\right)$ multiplied by $\sum w \Delta^{2} /(m-n)$, where m is the number of reflexions and n is the number of parameters refined (30 in the case of the refinement of SnI_{2} in $C 2 / m$ with all the atoms given anisotropic temperature factors). In practice, the covariances were found to be negligible and the square roots of the variances are quoted as estimated standard deviations (e.s.d.). The anisotropic temperature factor is of the form $\exp \left[-\left(h^{2} B_{11}+k^{2} B_{22}+l^{2} B_{33}+k l B_{23}+h l B_{13}+\right.\right.$ $\left.h k B_{12}\right)$].

Refinement of the structure

A first solution in the space group Cm was obtained from Patterson and Fourier methods, and refined by block-diagonal least-squares calculations to a final R value ($\sum\left|K F_{o}-F_{c}\right| / \Sigma\left|K F_{o}\right|$) of $0 \cdot 102$, as described by Moser \& Trevena (1969). A major difficulty was the correct identification of the tin and iodine atoms. The selected arrangement was the only one to give sensible temperature factors. It further commended itself by giving sensible bond lengths and by revealing structural features common to some chemically related species. In short, it was the only one to make both crystallographic and chemical sense.

The almost centrosymmetric appearance of the preliminary structure as projected on (010) suggested an alternative refinement in the space group $C 2 / m$, which constrains the number of variable parameters. In $C 2 / m$, as in $C m$, all atoms of the structure must lie on the mirror planes normal to the short axis b, because of space group considerations. The y coordinates are thus invariant. Similarly, the situation of all atoms on the mirror planes requires the vibration ellipsoids to have a principal axis parallel to [010], and B_{12} and B_{23} to be zero and invariant. Adopting the higher symmetry reduces the number of unique atoms from three tin and six iodine atoms to two tin and three iodine atoms. Further, one of the tin atoms must now lie on a centre of symmetry, in order to meet the requirements of symmetry and cell contents.

Six cycles of block-diagonal least-squares refinement with isotropic temperature factors reduced the R value to 0.071 . At this stage five reflexions were located which showed especially poor agreement. Errors in transcription from the manual data averaging process were corrected for these reflexions. A further ten cycles of refinement, with all the atoms refined anisotropically, reduced R to the final value of 0.049 . Final shifts in the positional and vibrational parameters did not exceed 10^{-5} and 2×10^{-4} respectively. The final parameters are listed in Table 2, and observed and calculated structure factors in Table 3. A difference map calculated at this stage was virtually featureless.

Table 2. Final parameters for tin(II) iodide refined in $C 2 / m$

All unique atoms are placed on the mirror planes at $y=0$ and consequently their y coordinates and B_{12} and B_{23} of the anisotropic temperature factors are zero and invariant.

	Fractional coordinates*		Anisotropic temperature factors $(\AA)^{2} \times 10^{3}$			
	x	z	B_{11}	B_{22}	B_{33}	B_{13}
$\mathrm{Sn}(1)$	0.0000	0.0000	$3 \cdot 48$	22.35	$5 \cdot 55$	$-1 \cdot 68$
$\mathrm{Sn}(2)$	$0 \cdot 2662$ (4)	$0 \cdot 3065$ (4)	$5 \cdot 18$	$45 \cdot 02$	$6 \cdot 70$	$-2 \cdot 15$
I(1)	0.0780 (3)	0.7299 (3)	3.46	28.31	$4 \cdot 51$	$0 \cdot 43$
I(2)	$0 \cdot 3602$ (3)	0.5609 (3)	$2 \cdot 87$	$33 \cdot 25$	$3 \cdot 37$	-0.67
I(3)	$0 \cdot 3523$ (3)	0.9239 (3)	$3 \cdot 60$	39.78	$5 \cdot 54$	-3.04

* Values in parentheses are estimated standard deviations in the last significant figure.

Table 3. Observed and calculated structure factors for tin(II) iodide in $C 2 / m$, scale $1.25 \times$ absolute

The columns are h, k, l, F_{o} and F_{s}.

The refinement in $C 2 / m$ is preferable to that in Cm because of both the lower R value and the more symmetrical coordination. However, a major assumption common to both of these solutions is the strict layering of the atoms, and hence the existence of the mirror planes. In order to determine the validity of this assumption, a further anisotropic refinement was attempted in the lower symmetry space group $C 2$, but this produced no improvement in the degree of refinement of the structure. Accordingly, only the solution in the space group $C 2 / m$ is discussed further.

Description of the structure

Adoption of space group $C 2 / m$ confines all the atoms to layers at $y=0$ and $y=\frac{1}{2}$. In the (010) projection of half of the unit cell of tin(II) iodide two distinct tin environments are apparent (Fig. 1):
(a) $\mathrm{Sn}(\mathrm{l})$, lying on a centre of symmetry, is surrounded octahedrally by iodine atoms. Table 4(a) shows that there is no significant distortion of octahedral bond angles around this tin atom, and that differences in bond lengths are less than 1%. Four iodine atoms [I(3)] are $3 \cdot 174 \AA$ distant, in layers above and
below that containing the tin atom, giving PdCl_{2}-type chains normal to (010). The octahedron is completed by two iodine atoms [I(1)] at $3 \cdot 147 \AA$ in the same layer as the tin atom. Infinite chains of edge-sharing octahedra thus extend normal to (010) (Fig. 2). Similar chains of rather more distorted edge-sharing octahedra are the main feature of the structures of anhydrous copper(II) chloride (Wells, 1947) and bromide (Helmholz, 1947);
(b) $\mathrm{Sn}(2)$ atoms, with their nearest neighbour iodine atoms, occur in pairs related by a twofold screw axis along [010] as shown in Figs. 1 and 3. Each $\mathrm{Sn}(2)$ is surrounded by seven iodine atoms. Six, in layers above and below that containing the tin atom, lie at the corners of a trigonal prism. The seventh and closest, in the same layer as the tin, belongs to the 2_{1}-related prism

Fig. 2. Coordination of $\mathrm{Sn}(1)$, projection on (100). The smaller darker circle is the tin atom, and the larger circles iodine atoms.

Fig. 3. The coordination of $\operatorname{Sn}(2)$, viewed along [100], with the positive direction of b tipped towards the observer through 20°. (a) Shows the trigonal prisms (outlined) associated with each of a pair of symmetry related $\operatorname{Sn}(2)$ atoms (small dark circles), and the relationship between them. Lines from the tin atoms indicate the positions of the five nearest neighbour iodine atoms. Iodine atom designations and the position of the twofold axis are given. (b) Shows the same set of atoms, joined by tin-iodine vectors, to demonstrate the coordination both of tin (smaller, darker circles) and of iodine (larger, lighter circles).
[Fig. 3(a)]. The prisms again extend infinitely normal to (010) and have iodine atoms $I(1)$ and $I(3)$ in common with the octahedron chains described above. The environment of $\mathrm{Sn}(2)$ closely resembles that found in other tin and lead dihalides which have the PbCl_{2} layer structure (summary: Wyckoff, 1963).

Table 4. Representative bond lengths and angles for $\mathrm{SnI}_{2}(C 2 / m)$
Estimated standard deviations to the last significant digit are given in parentheses. Atom designations are as in Fig. 1.
(a) Coordination of $\mathrm{Sn}(1)$ (distorted octahedron)

$\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(1^{\prime}\right)$	$3 \cdot 147(3) \AA$	$\mathrm{I}\left(1^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(3^{\prime \prime \prime}\right)$	$89 \cdot 4(7)^{\circ}$
$\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(3^{\prime \prime}\right)$	$3 \cdot 174(3)$	$\mathrm{I}\left(1^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(3^{\prime \prime}\right)$	$90 \cdot 6(7)$
$\mathrm{I}\left(1^{\prime}\right)-\mathrm{I}\left(3^{\prime \prime}\right)$	$4 \cdot 495(4)$	$\mathrm{I}\left(3^{\prime \prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)-{ }^{\prime}\left(3^{\prime \prime}\right)$	$91 \cdot 2(6)$
$\mathrm{I}\left(1^{\prime}\right)--\mathrm{I}\left(3^{\prime \prime \prime}\right)$	$4 \cdot 445(4)$	$\mathrm{I}\left(3^{\prime \prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(3^{\prime \prime \prime}\right)$	$88 \cdot 8(6)$
$\mathrm{I}\left(\mathbf{\prime}^{\prime \prime}\right)-\mathrm{I}\left(3^{\prime \prime \prime}\right)$	$4 \cdot 441(4)$		
$\mathrm{I}\left(3^{\prime \prime}\right)-{ }^{*} \mathrm{I}\left(3^{\prime \prime}\right)$	$4 \cdot 535(16)$		

(b) Coordination of $\mathrm{Sn}(2)$ (Trigonal prism with an additional iodine outside one prism face)

$\mathrm{Sn}\left(2^{\prime}\right)-\mathrm{I}(1)$	$3 \cdot 198$ (5)	(1)	
$\mathrm{Sn}\left(2^{\prime}\right)-\mathrm{I}(2)$	3.251 (5)	$\mathrm{I}(1)-\mathrm{Sn}\left(2^{\prime}\right)-\mathrm{I}(2)$	7)
$\mathrm{Sn}\left(2^{\prime}\right)-\mathrm{I}(3)$	$3 \cdot 718$ (5)	$\mathrm{I}(1)-\mathrm{Sn}\left(2^{\prime}\right)-{ }^{*}(2)$	$60 \cdot 3$ (9)
$\mathrm{Sn}\left(2^{\prime}\right)-\mathrm{I}\left(2^{\prime}\right)$	3.004 (5)	$\mathrm{I}(1)-\mathrm{Sn}\left(2^{\prime}\right)-\mathrm{I}(3)$	$77 \cdot 5$ (6)
$\mathrm{I}(1)-{ }^{*} \mathrm{I}\left(1^{\prime \prime \prime}\right)$	4.535 (16) \dagger	$\mathrm{I}(1)-\mathrm{Sn}\left(2^{\prime}\right)-* \mathrm{I}(3)$	$130 \cdot 4$ (7)
$\mathrm{I}(1)-\mathrm{l}\left(2^{\prime}\right)$	3.988 (4)	I(1)--Sn(2)-I(2')	80.0 (6)
$\mathrm{I}(1)-\mathrm{I}(2)$	$4 \cdot 451$ (4)	$\mathrm{I}(2)-\mathrm{Sn}\left(2^{\prime}\right)-* \mathrm{I}(2)$	$88 \cdot 5$ (6)
(1)-I(3)	4.348 (4)	$\mathrm{I}(2)-\mathrm{Sn}\left(2^{\prime}\right)-\mathrm{I}(3)$	68.0 (4)
$\mathrm{I}\left(2^{\prime}\right)-\mathrm{I}(2)$	4.040 (4)	$\mathrm{I}(2)-\mathrm{Sn}\left(2^{\prime}\right)-{ }^{*}(3)$	118.4 (5)
I(2)- - I(3)	3.915 (4)	$\mathrm{I}(2)-\mathrm{Sn}\left(2^{\prime}\right)-\mathrm{I}\left(2^{\prime}\right)$	80.4 (4)
$\mathrm{I}\left(3^{\prime}\right)--\mathrm{I}\left(3^{\prime \prime \prime}\right)$	3.999 (4)	$\mathrm{I}(3)-\mathrm{Sn}\left(2^{\prime}\right)-* \mathrm{I}(3)$	$75 \cdot 2$ (2)
$\mathrm{I}\left(1^{\prime}\right)-\mathrm{I}\left(2^{\prime \prime}\right)$	$4 \cdot 193$ (4)	$\mathrm{I}(3)-\mathrm{Sn}\left(2^{\prime}\right)--\mathrm{I}\left(2^{\prime}\right)$	416 (3)
$\mathrm{I}\left(2^{\prime}\right)--\mathrm{I}\left(2^{\prime \prime}\right) \quad 4 \cdot 217$ (4)			
Indicates the atom is translated by \mathbf{b}. \dagger This dimension appears three times in all. once for each sm edge parallel to \mathbf{b}.			

Discussion

Both the tin sites in $\operatorname{tin}(\mathrm{II})$ iodide can be compared with sites in previously determined structures of other $\operatorname{tin}(I I)$ compounds.

(a) Octahedral site $[\mathrm{Sn}(1)]$

Octahedral coordination of tin(II) occurs in the cubic metalloid SnTe , which has the NaCl structure (' ${ }^{\prime} a^{\prime}=6.313 \AA$; summary: Wyckoff, 1963) and in the cubic caesium trihalogenostannates(II) thought to have a perovskite structure (Barrett, Bird, Donaldson \& Silver, 1971).

At first sight, such coordination appears to offer a way of calculating a radius for truly ionic Sn^{2+}. Indeed, the radii calculated from $\mathrm{SnI}_{2}(0.92-0.93 \AA), \mathrm{SnTe}$ ($0.925 \AA$) and cubic $\mathrm{CsSnBr}_{3}(0.95 \AA)$ are in remarkable agreement with each other and with the $0.93 \AA$ predicted by Ahrens (1952) for ionic six-coordinate tin(II).

However, SnTe is clearly not a purely ionic compound, and the $\mathrm{Sn}-\mathrm{Te}$ bond length of $3.16 \AA$ can be interpreted almost as well in terms of atomic radii (say Sn $1 \cdot 62+$ Te $1 \cdot 60=3 \cdot 22 \AA$) as in terms of ionic radii (Te^{2-} in contact $2 \cdot 23+\mathrm{Sn}^{2+} 0 \cdot 93=3 \cdot 16 \AA$). In other
words, the bond length sheds little, if any, light on the relative preponderance of metallic or ionic bond character.

In the case of SnI_{2}, the average $\mathrm{Sn}-\mathrm{I}$ bond length in the octahedra is $3.165 \AA$. Of the $\mathrm{I} \cdots \mathrm{I}$ distances (octahedron edge), the longest is that of the layer spacing ($b=4.535 \AA$) and the shortest that of the shared edge of the octahedra ($4 \cdot 441 \AA$).

Assuming the iodine atoms to be in contact gives an iodine radius of about $2.24 \AA$, a value in broad agreement with, if slightly larger than, the $2 \cdot 16 \AA$ commonly quoted for I^{-}, or the $2 \cdot 20 \AA$ recently suggested for I^{-}by Shannon \& Prewitt (1968). This assumption of iodide ions in contact certainly appears to be the most sensible way of accounting for the layer spacing of $4.53 \AA$, but the I \cdots I distance expected for pure van der Waals contact ($4 \cdot 3 \AA$. Wells, 1962) is sufficiently close that alternative interpretations cannot be ruled out. Appreciable covalent bonding at the octahedral site can probably be ruled out, as this should result in much shorter Sn-I bonds ($2.73 \AA$ in gaseous SnI_{2}. Lister \& Sutton, 1941) than the $3 \cdot 15 \AA$ minimum found at this site.

(b) Trigonal prism site $[\mathrm{Sn}(2)]$

This type of site is found in $\operatorname{tin}($ II) halides with the PbCl_{2} structure, e.g. in SnCl_{2} (van den Berg, 1961) and SnBr_{2} and SnClI currently under investigation in this laboratory. More detailed examination of bond lengths in each case shows that one edge of the prism [in the present case $I(3)]$ is sufficiently distant from the enclosed metal atom to warrant its exclusion from the primary coordination of the metal atom.

In each case, the tin atom has three nearest neighbour halogen atoms [here $I(1)$ in adjacent layers and $\mathrm{I}\left(2^{\prime}\right)$ in the same layer as $\left.\operatorname{Sn}\left(2^{\prime}\right)\right]$, all lying to one side of the tin in a trigonal pyramidal grouping with tin at the apex. The trigonal pyramids share two corners to form chains parallel to the shortest unit cell edge, i.e. normal to the layers. In all cases there are also two next nearest neighbours [here $\mathbf{I}(2)$ in layers adjacent to $\mathrm{Sn}\left(2^{\prime}\right)$] which link the chains of pyramids in pairs (Fig. 3). The tin(II) atoms can thus be regarded as primarily five-coordinate with all the halogen atoms lying to one side of them.

In the present structure, all five $\mathrm{Sn}-\mathrm{I}$ bonds fall within the range $3 \cdot 00-3 \cdot 25 \AA$. Inclusion of the secondary coordination $\left[\operatorname{Sn}\left(2^{\prime}\right)\right.$ to $\mathrm{I}(3)$] makes the tin seven-coordinate, but the bonds involved ($3 \cdot 72 \AA$) are clearly of a different order. The shortest $\mathrm{Sn}-\mathrm{I}$ bond $\left[\operatorname{Sn}\left(2^{\prime}\right)-\mathrm{I}\left(2^{\prime}\right), 3 \cdot 00 \AA\right]$ is appreciably shorter than any other $\mathrm{Sn}-\mathrm{I}$ bond in the entire structure, and can be construed to have appreciable covalent character.

The coordination of iodine by tin provides a more coherent view of the two tin environments. Iodine atoms $I(1)$ and $I(2)$ each have three nearest neighbour tin atoms. I(3) has two or four nearest neighbour tin atoms, depending on whether coordination to $\operatorname{Sn}\left(2^{\prime}\right)$ is included, i.e. depending on whether $\operatorname{Sn}\left(2^{\prime}\right)$ is regarded
as five- or seven-coordinate. $\mathrm{I}(1)$ [and $\mathrm{I}\left(1^{\prime}\right)$] are common both to the octahedral chain coordination of $\operatorname{Sn}(1)$ type tin atoms and to the double chain of $\mathrm{Sn}(2)$-type (5-coordinate) tin atoms. These two chains, both parallel to [010], can be regarded as forming a continuous puckered sheet parallel to (201). All Sn-I bonds within this sheet are in the range $3 \cdot 00-3 \cdot 25 \AA$. The longer ($3 \cdot 72 \AA$) bonds, e.g. $\operatorname{Sn}\left(2^{\prime}\right)-\mathrm{I}(3)$, can then be thought of as connecting the (201) sheets in a three-dimensional structure.

Tin(II) iodide thus has a layer structure in a dual sense: crystallographically in terms of (010) layering, and in a crystal-chemical sense in terms of puckered (201) sheets of most tightly bonded atoms. The latter view of the structure is confirmed by an analysis of the Pauling electrostatic bond strenghts. Sn-I bond strengths within the puckered (201) sheets are uniformly $\frac{1}{3}$, whereas the longer sheetconnecting $\operatorname{Sn}(2)-I(3)$ bonds are of bond strength $\frac{1}{6}$.

Attempts were made to elucidate the nature of the bonding in SnI_{2} by other experimental approaches.

Solid solutions with PbI_{2}

Tin(II) iodide was crystallized from solutions containıng lead(II), in the hope that lead(II) might selectively replace tin (II) in either the octahedral or the prism site of SnI_{2}. X-ray powder diffraction and chemical analysis of the phases obtained revealed that compounds of the type $\mathrm{Sn}_{x} \mathrm{~Pb}_{(1-x)} \mathrm{I}_{2}$ were produced, with x in the range of $0 \cdot 0-0 \cdot 5$. All had the PbI_{2} (cadmium iodide) structure, confirming in part the results of Belotskii (1969). In the presence of high concentrations of tin(II), crystals with the morphology of tin(II) iodide were obtained along with the hexagonal plates of the CdI_{2} type, but it was not possible to determine with certainty whether the crystals contained lead.

Mössbauer spectroscopy

The most complicated $\mathrm{Sn}^{119 m}$ Mössbauer spectrum arising from the proposed X-ray structure would consist of four lines, corresponding to two quadrupole split absorptions, one for each tin site. The relative area of the pairs should be two to one in favour of $\operatorname{Sn}(2)$, although differences in recoil-free fractions for the two sites might cause departures from the ideal ratio. Simpler cases would arise when one or both of the tin sites gives a single line absorption, but the relative area condition should still apply.

The Mössbauer spectrum of $\operatorname{tin}(\mathrm{II})$ iodide at $80^{\circ} \mathrm{K}$ was obtained with a barium stannate source at room temperature. β-Sn, also at room temperature, provided the tin reference absorber. The resulting spectrum appeared at first sight to consist of a single line, but an improved fit was obtained on a two-line model. The final parameters produced lines of almost identical area and line-width (full-width at half height) of 0.99 and $1.00 \mathrm{~mm} . \mathrm{sec}^{-1}$. The isomer shifts of the lines
relative to $\beta-\mathrm{Sn}$ at room temperature are 1.65 and $1 \cdot 27 \pm 0.01 \mathrm{~mm} . \mathrm{sec}^{-1}$. If they are regarded as components of a quadrupole split absorption these values correspond to an isomer shift of $1.46 \pm 0.01 \mathrm{~mm} . \mathrm{sec}^{-1}$ relative to $\beta-\mathrm{Sn}$ and a quadrupole splitting of $0.37 \pm$ $0.02 \mathrm{~mm} . \mathrm{sec}^{-1}$. On this interpretation, the values are in agreement with previously published data e.g. those of Donaldson (1967), making allowance for the different reference points used in the calculation of isomer shifts.

Interpretation of the spectrum is, however, far from straightforward. If the lines are indeed components of a quadrupole split absorption, then the two tin sites in the structure must have very similar Mössbauer parameters so that they are not observed separately. If the lines are attributed one to each tin site, then the relative areas are not those expected from the structure. (A similar discrepancy between Mössbauer data and structural requirements has been reported for $\mathrm{Sn}_{3} \mathrm{BrF}_{5}$ by Donaldson, 1969.)

The only firm conclusion to be drawn at this stage is that even the octahedral $\operatorname{Sn}(1)$ cannot be purely ionic. The isomer shift of the $5 s^{2} \mathrm{Sn}^{2+}$ ion has been estimated as about $+5.0 \mathrm{~mm} \cdot \mathrm{sec}^{-1}$ relative to β-Sn (Donaldson, 1967) compared with the highest value of $+1.65 \mathrm{~mm} \cdot \mathrm{sec}^{-1}$ in the present spectrum. The relatively low Mössbauer shifts could be accounted for if some of the $5 s$ electrons of the octahedral $\mathrm{Sn}(1)$ atoms were involved in conduction bands.

Similar low Mössbauer isomer shifts were found by Barrett et al. (1971) for the cubic CsSnX_{3} phases (e.g. $+1.33 \mathrm{~mm} . \mathrm{sec}^{-1}$ relative to β-tin for CsSnBr_{3}) and similar explanations suggested.

Further work on the relationship of the Mössbauer spectrum of tin (II) iodide to colour and conductivity at different temperatures is now in progress, and should throw further light on the bonding problems posed by this structure.

Conclusion

The X-ray structure of tin(II) iodide shows that the compound has a layer structure closely related to the lead(II) chloride type, two-thirds of the tin cations occupying sites with coordination characteristic of this type of structure. However, restrictions on anion packing result in the remaining tin atoms being coordinated in octahedral sites closely resembling those of tin(II) in tin telluride. It has not proved possible to confirm the X-ray structure in detail by Mössbauer spectroscopy.

We are indebted to Mrs Lorna Ingram for the X-ray intensity data, and to Dr F. W. D. Woodhams of the Department of Natural Philosophy of this University and Dr W. Parker of the Physics Department of Exeter University for obtaining and interpreting the Mössbauer data. One of us (I.C.T.) is grateful to the Tin Research Council for a maintenance grant.

References

Ahrens, L. H. (1952). Geochim. Cosmochim. Acta, 2, 155.
Aylett, B. J. (1969). Prog. Stereochem. 4, 231.
Barrett, J., Bird, S. R. A., Donaldson, J. D. \& Silver, J. (1971). J. Chem. Soc. (A), p. 3105.

Belotski, D. P., Antipov, I. N., Nadtochi, V. F. \& Dodik, S. M. (1969). Inorg. Mater. 5, 1583.
Berg, J. M. van den (1961). Acta Cryst. 14, 1002.
Daly, J. J., Stephens, F. S. \& Wheatley, P. J. (1963). Monsanto Research S. A., Final Report No. 52.
Donaldson, J. D. (1967). Prog. Inorg. Chem. 8, 287.
Donaldson, J. D. (1969). J. Chem. Soc. (A), p. 2358
Helmholz, L. (1947). J. Amer. Chem. Soc. 69, 886.

International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.

Lister, M. W. \& Sutton, L. E. (1941). Trans. Faraday Soc. 37, 406.
Moser, W. \& Trevena, I. C. (1969). Chem. Commun. p. 25. North, A. C. T. (1964). J. Sci. Instrum. 41, 42.
Shannon, R. D. \& Prewitt, C. T. (1968). Acta Cryst. 25, 925.

Wells, A. F. (1947). J. Chem. Soc. p. 1670.
Wells, A. F. (1962). Structural Inorganic Chemistry. 3rd Ed., p. 316. Oxford: Clarendon Press.
Wyckoff, R. W. G. (1963). Crystal Structures. 2nd Ed. Vol. I, pp. 90, 198, 299, 403. New York, London and Sydney: Interscience.

Acta Cryst. (1972). B28, 2971

The Crystal Structure of 6-Methyluracil-5-acetic Acid*

By Riccardo Destro \dagger and Richard E. Marsh
Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91109, U.S.A.

(Received 24 May 1972)

Abstract

Crystals of 6-methyluracil-5-acetic acid are monoclinic, space group $P 2_{1} / n$, with $a=4 \cdot 8929$ (1), $b=$ 12.6368 (3), $c=12.7455$ (1) $\AA, \beta=99.174$ (2) ${ }^{\circ}, Z=4$. Approximately 1600 intensity data for two different crystals were collected on an automated diffractometer; one crystal was an approximate cube 0.16 mm on an edge and the second was a sphere 0.18 mm in diameter. The structure was derived by direct phasing methods and refined by full-matrix least-squares analysis. The two data sets were treated separately, and both led to the same parameters (within three e.s.d.'s) except for the coefficient of secondary extinction, which was 25% (four e.s.d.'s) smaller for the crystal that had been ground to a sphere. Final refinement, which included anisotropic temperature coefficients for all atoms including hydrogen, led to an R index of 0.036 and standard deviations of about $0.0015 \AA$ in the positions of the heavy atoms. The pyrimidine ring is slightly nonplanar, being folded along the $C(2) \cdots C(5)$ axis to relieve strain between the exocyclic substituents. The structure features an off-set stacking of parallel pyrimidine rings at a separation of about $3 \cdot 29 \AA$, and hydrogen bonding across centers of symmetry to form base-pairs.

Introduction

Our crystal structure investigation of 6-methyluracil5 -acetic acid, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$, was begun in 1967. Originally inspired by our continuing interest in the geometry and packing of nucleic acid derivatives, it served as an carly test in our Laboratories of the power of direct methods of phase determination and of the accuracy of diffractometer measurements. At the beginning of the analysis, the author who carried out all of the experimentation (RD) knew nothing as to the nature of the compound other than that it contained

[^1]no atom heavier than oxygen; it is a testimonial to the power of present-day methods that RD knew the complete make-up of the molecule - including the identities of the various atom types and the locations of the protons - within two weeks after completing the data collection.

Experimental

Crystals in the form of colorless needles, elongated along a, were obtained from Professor James English of Yale University as part of the Treat B. Johnson collection. Unit-cell dimensions were obtained from a leastsquares treatment of 84 measurements on zero-level Weissenberg photographs about the a and b axes, taken at $20(1)^{\circ} \mathrm{C}$; the films were held in the asymmetric position, following the Straumanis technique. The space group $P 2_{1} / n$ was indicated by the absence of reflections $h 0 l$ with $(h+l)$ odd and $0 k 0$ with k odd. The density was measured by flotation in an aqueous

[^0]: * Present address: Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23185, U.S.A.

[^1]: * Contribution No. 4463 from the Arthur Amos Noyes Laboratory of Chemical Physics. This investigation was supported in part by Public Health Service Research Grant No. GM 16966, from the National Institute of General Medical Sciences.
 \dagger Present address: Istituto di Chimica Fisica, Università di Milano, Via C. Saldini 50, 20133 Milano, Italy.

