1. If the electric flux through a closed surface is zero, is the

electric field necessarily zero at all points on the surface? No. If the net electric flux through a surface is zero, then the net charge contained in the surface is

Explain. What about the converse: If E = 0 at all points on zero. However, there may be charges both inside and outside the surface that affect the electric field
the surface is the flux through the surface zero? at the surface. The electric field could point outward from the surface at some points and inward at

2. Is the electric field E in Gauss's law, §E - dA = Quna/e€q others. Yes. If the electric field is zero for all points on the surface, then the net flux through the
created only by the charge Qupe ? surface must be zero and no net charge is contained within the surface.

2. No. The electric field in the expression for Gauss’s law refers to the fotal electric field, not just the
electric field due to any enclosed charge. Notice, though, that if the electric field is due to a charge
outside the Gaussian surface, then the net flux through the surface due to this charge will be zero.

12. A solid conductor carries a net positive charge Q. There is a
hollow cavity within the conductor, at
whose'cenler is a negal.ive point charge 0 12. (a) A charge of (Q — g) will be on the outer surface of the conductor. The total charge Q is placed
—q (Fig. 22-24). What is the charge on on the conductor but since +g will reside on the inner surface, the leftover, (Q — q), will reside
(a) the outer surface of the conductor on the outer surface.
Efndd (b) . the . IH;’IE!I’ surface of the (b) A charge of +¢ will reside on the inner surface of the conductor since that amount is attracted
conductors cavity: by the charge —¢g in the cavity. (Note that E must be zero inside the conductor.)

FIGURE 22-24
Question 12.

3. (a) Since the field is uniform, no lines originate or terminate inside the cube, and so the net flux is

@_ =|o]

(b) There are two opposite faces with field lines perpendicular to the faces. The other four faces

3. () A cube of side € is placed in a uniform field have field lines parallel to those faces. For the faces parallel to the field lines, no field lines

E, with edges parallel to the field lines. (@) What is the net
flux through the cube? (b) What 1s the flux through each ol
1ts si1x faces?

enter or exit the faces. Thus d}lmjlﬂ = ]E[

Of the two faces that are perpendicular to the field lines, one will have field lines entering the
cube, and so the angle between the field lines and the face area vector is 180°. The other will
have field lines exiting the cube, and so the angle between the field lines and the face area

= EvA= EjAcos180° = |-E,£* | and

wvector is 0°. Thus we have dﬁmm

= Esd=E Acos0°=|E |

leaving




7. (II) In Fig. 22-27, two objects, O; and O,, have charges
+1.0 C and —2.0 uC respectively, and a third object, Os, is

electrically neutral. (@) What is the electric flux through the (a) Use Gauss's law to determine the electric flux.
surface A, that encloses all the three objects? (b) What is P
the electric flux through the surface A, that encloses the O = Do — _l'nfm ¢ — —1.1x1ﬂ5N-m1/C
third object only? e 885x107CYN-m’
A,

. (b) Since there is no charge enclosed by surface Aj, fDE = @
0®41.0 uC |

FIGURE 22-27 0,020 uC
Problem 7. : e '

9. The only contributions to the flux are from the faces perpendicular to the electric field. Over each of

these two surfaces, the magnitude of the field is constant, so the flux is just E<A on cach of these

9. (II) In a certain region of space, the electric field is constant fwo surfaces.

in direction (say horizontal, in the x direction), but its

magnitude decreases from £ =560N/C at x =10 to ®, = (E.i) _,_(]"g.}l) — Eﬁgﬂfl —E ¢ = O -

E = 410N/C at x = 25m. Determine the charge within a rght e £,

cubical box of side £ = 25 m, where the box is oriented so

that four of its sides are parallel _ B 2. B 2 22 2y | -7
to the field lines (Fig. 22-28). x=0 x=25m Oues = (Esgu = Bua) €6, = (410N/C—560N/C) (25m)*(8:85x10™ C*/N-m’) =|-8.3x107C

FIGURE 22-28 s
Problem 9. =25 m—~



24,

(b)

(IT) Two large, flat metal plates are separated by a distance
that is very small compared to their height and width. The
conductors are given equal but opposite uniform surface
charge densities + o. Ignore edge effects and use Gauss’s
law to show (a) that for points far from the edges, the elec-
tric field between the plates is £ = o /e, and
(b) that outside the plates on either side the
field is zero. (¢) How would your results be
altered if the two plates were nonconductors?
(See Fig. 22-30).

FIGURE 22-30 .
Problems 24, 25, and 26. +F  —=(F

If we now put the cylinder from above so that the right end is

+a
inside the conducting material, and the left end is to the left of 4
the left plate, the only possible location for flux is through the .

left end of the cylinder. Note that there is NO charge enclosed E e 4
by the Gaussian cylinder. q—lT T }

JEdA= [ E-dA+ [E-dA= [E-dA - Qs
ends side I:r,fﬁ £y

0 0
E _,A=— = |E

outside outside —
z:'I:I E’ﬂ

24.

Since the charges are of opposite sign, and since the charges are free to move since they are on
conductors, the charges will attract each other and move to the inside or facing edges of the plates.
There will be no charge on the outside edges of the plates. And there cannot be charge in the plates
themselves, since they are conductors. All of the charge must reside on surfaces. Due to the
symmetry of the problem, all field lines must be perpendicular to the plates, as discussed in Example
22-7.

(a) To find the field between the plates, we choose a gaussian cylinder, +a -
perpendicular to the plates, with area A for the ends of the cylinder. We
place one end inside the left plate (where the field must be zero), and the
other end between the plates. No flux passes through the curved surface

of the cylinder. A,
JEedA= [ EedA+ [EedA= [ BudA=Z=t
ends right

&

side: ]

end

'E'bv.'mt‘an =— 'Eb-:’m =

&y 0

The field lines between the plates leave the inside surface of the left plate, and terminate on the
inside surface of the right plate. A similar derivation could have been done with the right end of
the cylinder inside of the right plate, and the left end of the cylinder in the space between the
plates.

—F

(¢) If the two plates were nonconductors, the results would not change. The charge would be
distributed over the two plates in a different fashion, and the field inside of the plates would not
be zero, but the charge in the empty regions of space would be the same as when the plates are

conductors.



25. (II) Suppose the two conducting plates in Problem 24 have

the same sign and magnitude of charge. What then will be
the electric field (a) between them and (b) outside them on
either side? (¢) What if the plates are nonconducting?

42, (1I) An uncharged solid conducting sphere of radius r,

contains two spherical cavities of radii r; and ry, respec-
tively. Point charge @, is then placed within the cavity of

radius r; and point charge

(0, is placed within the
cavity of radius r, (Fig.
22-38). Determine the
resulting electric  field
(magnitude and direc-
tion) at locations outside
the solid sphere (r = ry),
where r is the distance
from its center.

FIGURE 22-38
Problem 42.

Example 22-7 gives the electric field from a positively charged
plate as E = o /2g, with the field pointing away from the plate. g E
The fields from the two plates will add, as shown in the figure. qi'* _1*, _Lh...
(@) Between the plates the fields are equal in magnitude, but
point in opposite directions. - -+ —
ER EH ER
o o
El:n:twccn =, T .~ @
2, 2¢
(b) Outside the two plates the fields are equal in magnitude and +a +o
point in the same direction.
o o o
— + —_— | —

outside =
2.&{, Z&ﬂ £

(c) When the plates are conducting the charge lies on the surface of the plates. For nonconducting
plates the same charge will be spread across the plate. This will not affect the electric field
between or outside the two plates. It will, however, allow for a non-zero field inside each plate.

42. The conducting sphere is uncharged, and the electric field is 0 everywhere within its interior, except
for in the cavities. When charge O, is placed in the first cavity, a charge -0, will be drawn from the
conducting material to the inner surface of the cavity, and the electric field will remain 0 in the
conductor. That charge —(J, will NOT be distributed symmetrically on the cavity surface. Since the
conductor is neutral, a compensating charge O, will appear on the outer surface of the conductor
(charge can only be on the surfaces of conductors in electrostatics). Likewise, when charge ¢, is

placed in the second cavity, a charge —(J, will be drawn from the conducting material, and a

compensating charge {J, will appear on the outer surface. Since there is no electric field in the
conducting material, there is no way for the charges in the cavities to influence the charge
distribution on the outer surface. So the distribution of charge on the outer surface is uniform, just as
it would be if there were no inner charges, and instead a charge O, + O, were simply placed on the

conductor. Thus the field outside the conductor is due to a spherically symmetric distribution of

. : I @+0, —
0O +0,. Application of Gauss’s law leads to E = — =L = If 0, +0, >0, the field will point

5
dre,

I

radially outward. If O, + 0, <0, the field will point radially inward.



57. A point charge Q is placed a distance ry/2 above the surface
of an imaginary spherical surface of radius ry (Fig. 22-43).
(@) What is the electric flux through the sphere? (b) What
range of values does I have at the surface of the sphere?
(¢) Is E perpendicular to the sphere at all points? (d) Is

Gauss’s law useful for obtaining E at the

surface of the sphere?

e,

>

0 )
FIGURE 22-43
Problem 57.

57.

(a)

(b)

(c)

(d)

There is no charge enclosed within the sphere, and so no flux lines can

origina

the sphere. Thus the net flux is [0

The maximum electric field will be at the point on the sphere closest
to ¢J, which is the top of the sphere. The minimum electric field will be
at the point on the sphere farthest from (), which is the bottom of the

sphere.
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te or terminate inside the @spherc. All field lines enter and leave

E is IHCIT perpendiculaﬁ at all points. It is only perpendicular at the two points already

discussed: the point on the sphere closest to the point charge, and the point on the sphere

farthest from the point charge.

The electric field is not perpendicular or constant over the surface of the sphere. Therefore

s law is for obtaining E at the surface of the sphere because a gaussian surface

Gauss’

cannot be chosen that simplifies the flux integral.




