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Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates 

HENRY EYRING, Princeton University 

(Received February 3, 1936) 

Since to form a hole the size of a molecule in a liquid 
requires almost the same increase in free energy as to 
vaporize a molecule, the concentration of vapor above the 
liquid is a measure of such "molecular" holes in the liquid. 
This provides an explanation of the law of rectilinear 
diameters of Cailletet and Mathias. The theory of reaction 
rates yields an equation for absolute viscosity applicable to 
cases involving activation energies where the usual theory 
of energy transfer does not apply. This equation reduces to 
a number of the successful empirical equations under the 

INTRODUCTION 

T HE general equation for the rate of any 
process in which matter rearranges by sur

mounting a potential energy barrier has been 
proposed in the following form:1 

(1) 

Here Fa is the partition function for the acti
vated complex per unit of length along the coor
dinate normal to the top of the potential barrier. 
The average velocity p/m* along this coordinate 
must of course be expressed in these same units 
of length, p and m* being the corresponding 
average momentum and reduced mass, respec
tively. Fn is the partition function for the normal 
state and x, the transmission coefficient, is the 
chance that a system having once crossed the 
potential barrier will react and not recross in the 
reverse direction. In (1) both partition functions 
are to be measured from the same zero of energy. 

If the curvature normal to the barrier is suffi
ciently small we may treat motion in this direc
tion as a pure translation, in which case (1) 
becomes: 

Fa* kT 
k' =X- _e-Eo/kT. 

Fn h 
(2) 

Here Fa * differs from Fa in two ways. First it is 
calculated by using a zero of energy higher by 
Eo than for F" and secondly the partition func
tion for the degree of freedom normal to the 

1 (a) Eyring, J. Chern. Phys. 3, 107 (1935); (b) Evans 
and Polanyi, Trans. Faraday Soc. 21, 875 (1935); (c). 
Wynne-Jones and Eyring, J. Chern. Phys. 3, 492 (1935). 

appropriate limiting conditions. The increase of viscosity 
with shearing stress is explained. The same theory yields 
an equation for the diffusion coefficient which when com
bined with the viscosity and applied to the results of Orr 
and Butler for the diffusion of heavy into light water gives 
a satisfactory and suggestive interpretation. The usual 
theories for diffusion coefficients and absolute electrical 
conductance should be replaced by those developed here 
when ion and solvent molecule are of about the same 
size. 

barrier is omitted from Fa * and included in the 
frequency factor kT/h. Here k, T and h are the 
Boltzmann constant, the absolute temperature, 
and the Planck constant, respectively. 

The potential surface along the degree of free
dom normal to the barrier is really curved and 
we can take account of "tunneling" up to terms 
involving the second power of h by multiplying 
(2) by the factor (l + (1/24) (hv/kT)2) to give 

Fa* kT (EO) ( 1 (hVn)2) k'=X--exp -- 1+- - ,(3) 
Fn h kT 24 kT 

where iVn = (1/27r) (fn/m*) 1 and!" and m* are the 
force constant and reduced mass normal to the 
top of the potential barrier.2 !n is negative. The 
ratio of partition functions in (2) and (3) can 
be written as the equilibrium constants K = Fal Fn 
and K* = Fa *e-EolkT I Fr. and all the thermody
namic and statistical mechanical methods for 
treating or discussing any equilibrium constant 
are available for reaction rates. 

Now if we actually calculate our potential 
energy surfaces and particularly if we are dis
cussing isotope effects we may prefer to write (3) 
in the entirely equivalent form: 

k'=X(Fa*) kT(1+~(hvn)2) 
F" c h 24 kT 

exp (-EclkT). (4) 

Here instead of using Eo the actual activation 
energy at the absolute zero we use Ec the "c1assi-

2 Wigner, Zeits. f. physik. Chemie B19, 203 (1932). 
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284 HENRY EYRING 

cal activation energy at the absolute zero." This 
simply involves absorbing the corresponding zero 
point energies in the partition functions. Thu's in 
the ratio Fa * / Fn in (2) and (3) the partition 
function corresponding to the normal vibration 
Vi is written as (l-exp (hv;jkT))-l. In (Fa*/Fn)c 
in (4) this same partition function is written as: 

= (2 sinh hv;j2kT)-1. 

There is of course no real difference between (3) 
and (4) and they can be used interchangeably. 

Now in certain reactions such as associations 
of atoms and of some types of radicals there is 
no activation energy and, therefore, no activated 
state. However, when we treat the energy of 
rotation as a potential energy there is an acti
vation energy and the procedure described above 
becomes immediately applicable.3 

THE THEORY OF HOLES AND THE "LAW OF 

RECTILINEAR DIAMETERS" OF 

CAILLETET AND MATHIAS 

Suppose we have N molecules forming a liquid. 
Then each of them is bound to the others by 
bonds adding up to the total energy E=LniEi 

i 

where ni is the number of bonds of a particular 
kind each of which has the bond strength E i . To 
vaporize the N molecules requires an energy of 
exactly NE/2, since each bond belongs to two 
molecules. Therefore to vaporize a single mole
cule requires the energy E/2 providing no hole 
is left in the liquid. However, if we vaporize one 
molecule leaving the hole we must supply exactly 
the energy E. If we then return this gas molecule 
to the liquid we get back the energy E/2; so that 
it requires rigorously the same energy E/2 to 
make a hole in a liquid of a size which will just 
accommodate a single molecule, as it does to 
vaporize one molecule without leaving a hole. 
Stated differently it takes just the same energy 
for a hole the size of a molecule to detach itself 
from the empty space above a liquid and pass 
into the liquid as it does for a molecule to detach 

3 Eyring, Gershinowitz and Sun, ]. Chern. Phys. 3, 786 
(1935). 

itself from the liquid and pass into the empty 
space. Now a molecule in empty space because 
it can move around freely has a considerably 
higher entropy than in the liquid state. That is 
to say it has accessible to it a large number of 
different states which it can assume without in
creasing its energy. Exactly the same is true of 
the hole dissolved in the liquid. A hole can take 
up a great many different positions in the liquid 
each of which has exactly the same energy. If we 
imagine ourselves watching these holes we would 
see them darting in a random fashion through 
the solution with a velocity characteristic of the 
liquid molecules at this temperature. A liquid is 
much like a crystal in having a more or less 
definite lattice arrangement. Wherever there is a 
hole a neighboring molecule can jump into the 
empty lattice point leaving a hole behind and as 
this process goes on continuously each hole con
tributes in effect a new degree of translation to 
the liquid. Below the critical temperature this 
translation in the liquid is not quite as free as 
in the vapor phase so that the apparent partition 
function to be used for the holes is somewhat 
smaller than for vapor molecules. At the critical 
temperature, however, the mobilities and there
fore the two partition functions become equal. 
Thus for holes dissolved in liquids as for mole
cules dissolved in empty space we have the the
orem of equal (or very nearly equal) entropies 
as well as energies. Now how much energy is 
required for the association or dissociation of 
holes of about molecular size depends of course 
upon the solvent. However, since these processes 
take place both in the gas and the liquid phase 
we assume as a first approximation that associ
ation or dissociation will not affect the distri
bution ratio of holes between the phases. In that 
case at the critical temperature we should have 
exactly as much matter in a cc of otherwise 
empty space as we have holes in a cc of matter. 
As we lower the temperature a plot of this aver
age density against temperature would almost 
parallel the temperature axis, the density increas
ing slightly as the temperature decreases. Thus 
the average density of the vapor and liquid phase 
should to this approximation be nearly inde
pendent of the vapor pressure (or the temper
ature). Now the law of rectilinear diameters 
states that for actual cases such a plot of average 
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density is a straight line but that it may and in 
general is somewhat inclined with respect to the 
temperature axis. Thus the law of Cailletet and 
Mathias follows from the statistical mechanical 
consideration of holes. 

The theorem of equal energy, and approxi
mately equal entropy for holes in matter as for 
molecules in empty space frequently applies in 
the same way to solids as to liquids, and the 
concentration of the vapor is then a rough meas
ure of the number of holes in the condensed 
phase. Polarization forces necessitate modifica
tion of this idea of equal energy in some solids 
as Schottky has pointed out.4 

The theory of holes is important for all phe
nomena in which a part of the matter in a con
densed phase moves with respect to other parts, 
since at the borders of holes such motions can 
be set up with a minimum of disturbance to 
molecules not participating in the motion. In 
certain phenomena it may be simpler to fix atten
tion on the few holes than the much more numer
ous molecules. Thus in the melting of crystals 
the disorder which must set in by one group of 
molecules first moving with respect to a second 
group and so releasing the latter from a part of 
their restraining potential (this in turn releasing 
a third group, etc.) may begin at a hole. More 
probably, however, it will begin at a crystal 
boundary since the heat is ordinarily supplied 
there. If the melting involves expansion then 
small holes will not permit the melting to go far 
just as reactions involving expansions cannot 
take place except at an interface. Sharp melting 
points only occur in well ordered crystals, not 
for example in glasses. This is as we would expect 
since only in very precisely ordered arrangements 
can the attainment of a critical motion by a few 
molecules profoundly affect the stability of neigh
bors and these in turn release still others from 
their restraining potential. The problem of order
disorder has been discussed at length by Bragg 
and Williams,5 by Fowler and others.6 

Some support for the general point of view 
with respect to holes as developed here may be 
ohtained from discussions of the Wilson theory 

4 Schottky, Zeits. f. physik. Chemie B29, 335 (1935). 
5 Bragg and Williams, Proc. Roy. Soc. AI4S, 699 (1934). 
'Fowler, Proc. Roy. Soc. A1Sl, 1 (1935); Mott, Proc. 

Roy. Soc. A146, 465 (1934). 

of semiconductors. In this theory electrical con
ductance is assumed to arise from thermal fluc
tuations which raise an electron of low energy up 
to the conduction levels leaving a positive hole 
behind. The theory seems to account satisfac
torily for the observed facts. 7 We now proceed 
to develop a theory of viscosity in condensed 
phases from the point of view of absolute reaction 
rates. 

VISCOSITY 

The perpendicular distance between two neigh
boring layers of molecules sliding past each other 
is taken as AI. The motion is assumed to take 
place by an individual molecule in a plane (or 
layer) occasionally acquiring the activation en
ergy necessary to slip over the potential barrier 
(arising from squeezing against its neighbors) to 
the next equilibrium position in this same plane. 
The average distance between these equilibrium 
positions in the direction of motion is taken as A 
while the distance between neighboring molecules 
in this same direction is A2 which mayor may 
not equal A. The molecule to molecule distance 
in the plane normal to the direction of motion 
is written as A3. By definition we have for the 
viscosity 7] = ftd t:.. V. Here! is the force per square 
centimeter tending to displace one layer with 
respect to the other and t:.. V is the difference in 
velocity of these two layers which are a distance 
Al apart. Now the number of times that a mole
cule moves in the forward direction in a second 
may be written as the corresponding specific reac
tion rate 

(5) 

Here kl is the absolute rate for the transition 
(see Eq. (3)) when no force is applied. The sig
nificance of the term exp JA2A3A/2kT may be seen 
as follows. The force acting on a single molecule 
is clearly JA2A3 and it acts to lessen the work of 
passing over the barrier through a distance A/2; 

7 Fowler, Proc. Roy. Soc. A140, 505 (1933); Frenkel, 
Todes and Ismailow, Acta Physicochimica U.S.S.R. 1, 
97 (1934). 
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so that in this forward direction the height of the 
barrier is in effect lowered by the amountfX2A3A/2 
while in the backward direction it is raised by 
the same amount. Thus for the backward direc
tion we have kb=kl exp (-fX2A3A/2). Now ~ V 
for each molecule in the fast layer and therefore 
for the layer as a whole is then just: 

~ V = Ak I (exp fX2
A

3
A 

_ exp (_fX
2A3A

)) 
2kT 2kT 

(6) 

or ~ V = Ak l2 sinh (fX2A3A/2kT). (7) 

So that 

(8) 

Now for ordinary viscous flow fA2A3A/2«kT so 
that expanding the exponentials and keeping 
terms only up to the first power we have after 
cancelation 

(9) 

Now if we substitute our explicit expression for 
this frequency kl we obtain: 

Since viscous flow is a rate process we know it 
will proceed by all possible mechanisms but 
chiefly by the fastest ones. Thus those orienta
tions of the molecules are favored which lessen 
the viscosity. First in importance: a molecule in 
the activated state will be oriented in such a way 
as to make the activation energy Eo as small as 
possible in spite of the fact that such a require
ment of nearly exact orientation tends to make 
Fa * smaller and therefore Fn/ Fa * larger. Other 
things being equal then Eo will tend to be small 
and A2A2AS/AI large. X, the chance that after a 
system has once reached the activated configura
tion it will pass over the barrier and not imme
diately return to the initial configuration, is 
probably very nearly unity. Thus from (10) we 
see that a molecule like benzene will tend to have 
its plane in the plane of the layer as it passes 
through the activated configuration as this will 
make Al and Eo smaller and A2A2A3 larger. Now 
a molecule is oriented in this way (kf+k b) times 
per second so that if TR is its relaxation time 

through rotation after orientation the fraction of 
the time it is thus oriented will be approximately 

(11) 

as long as a is considerably less than 1. Since 
(kf+kb ) can be determined from the measured 
viscosity either TR or a follows from a knowledge 
of the other. Since relaxation by rotation will in 
general involve the passage over a potential 
energy barrier we can write TR= 1/k2 where k2 is 
the k' of Eq. (3) after an appropriate assignment 
of values for the quantities therein. A good 
approximation for such rotations in most cases 
will be 

1/TR=k2= (kT/h) exp (-Eo/kT) (12) 

where the activation energy is the only unknown. 
If Eo is negligibly small TR~h/kT~2X10-13 sec. 
around room temperature. However, there are 
cases such as the orientation of the dipoles of 
water in an alternating field near the melting 
point where these dipoles seem unable to follow 
the field for frequencies in excess of 60,000 cy
cles. 8 Substituting this number for k2' in (12) we 
find that this relaxation must involve passage 
over a barrier of about 10 kcal. Hysteresis effects 
and relaxation processes are in general simply 
reaction processes to be treated by Eqs. (3) or 
in the simpler cases by (12).8a One can of course 
regard kl' kj, kb in our viscosity equations as the 
reciprocals of the various relaxation times re
quired for vibration to change into translation. 

COMPARISON OF THE THEORY OF VISCOSITY FOR 

LIQUIDS AND GASES 

For the viscosity theory to apply as we have 
developed it the following condition must be ful
filled. A molecule after making the jump from 
one minimum to the next must remain in the 
new minimum long enough to dissipate the energy 
it possessed while passing over the last barrier. 
Thus at each minimum it must acquire anew the 
activation energy as a purely random process. 
When these conditions are not fulfilled we can 

8 Smyth and Hitchcock, ]. Am. Chern. Soc. 54, 4631 
(1932). 

8a In this sense even very large relaxation times have 
physical significance and may be employed serviceably in 
the interpretation of liquid-vitreous and vitreous-crystal 
transitions as Professor W. T. Richards points out in a 
paper soon to be published. 
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more appropriately assume the usual mechanism 
of transfer of momentum from one layer to the 
next by the molecules themselves passing back 
and forth between fast and slow layers. In this 
case the momentum transferred per square centi
meter per second is readily seen to be ,.,dv / dz 
=~vcmldv/dz; so that 

,.,=ivcml. (13) 

Here dv/dz, v, C, m and I are the velocity gra
dient, 'molecules per cc, mean velocity of the 
molecules (c=2(2kT/rrm)!), mass and mean free 
path, respectively. Clearly (10) will apply if 
the activation energy for the forward direction 
(Eo-jA2XaA/2) is equal to or greater than about 
twice kT since then the molecule will have a 
sufficient number of collisions with neighbors in 
between passages over successive barriers so that 
equilibrium statistics will apply. The equation 
should still apply approximately even for cases 
where the activation energy drops to kT. It is 
of some interest to see how (10) compares for
mally with (13) if we apply the former arbitrarily 
to liquids or gases not showing an activation 
energy. In that case,., takes the form 

X1h Fr, X1h (2rrmkT) IX ,.,= -~ 

XX2X2Xa Fa * XX?X2Xa h 

Here we have assumed that the X's become equal 
to each other, Eo=O, and 

and of course X= 1. Comparing this with Eq. 
(13) after substituting the value for c we find 
that the two mechanisms lead to the same result 
only if we make the identification 

(16) 

In the case of liquids without activation energy 
we might very well take (16) as a defining equa
tion for I or X2. In any case any reasonable way 
of arriving at X2 will lead to satisfactory values 
for X in this critical region of activation energies 
where neither the reaction theory of viscosities 
(Eq. (10)) nor the momentum transfer theory 
(Eq. (13)) strictly applies. An exactly parallel sit
uation arises in "unimolecular" reactions where 
at high pressure the slow (rate determining) 

process is passage over the potential barrier (in
side a molecule) while at very low pressures the 
rate determining process becomes the rate at 
which energy is supplied by collisions. In the 
theory of viscosity it may be possible to bridge 
the intermediate region by the same type of 
treatment used for reaction rates. \Ve shall not, 
however, develop this part of the theory further 
here. 

Andrade9 has proposed applying the momen
tum transfer theory to liquids as well as gases. 
He modifies the gas treatment by taking account 
of the fact that energy transfer in liquids is due 
to vibrations instead of translations. For the 
metals he secures excellent numerical agreement 
with experiment by a reasonable choice of the 
quantities entering into his equation. It is just 
these cases for which gas-like transfer is to be 
expected since (E - jA2XaX2 /2) (kT)-l is very small. 
On the other hand where this exponential factor 
is not very small we must adopt the reaction 
rate picture for viscosity which leads us to 
Eq. (10). 

COMPARISON OF THE VISCOSITY EQUATION WITH 

EXPERIMENT 

In the second paper Andrade has proposed an 
equation,., = (A/vi) exp (c/vT) where A and care 
parameters left undetermined; v is the specific 
volume and T the temperature. He has then 
determined A and c for a wide variety of sub
stances using the available experimental values 
for,., over a temperature range and assembled 
the results in his Table IV which we need not 
reproduce. The present theory supplies these 
parameters only if we can calculate the difference 
in energy for the initial and the activated con
figurations as well as the corresponding vibra
tional frequencies and moments of inertia. To do 
this exactly we would have to treat the whole 
liquid mechanically as though it were :t single 
molecule. Fortunately in the ratio of partition 
functions F./ Fa * of (10) all degrees of freedom 
which are unchanged in the initial and final states 
disappear and the same is of course true with 
regard to the energy term Eo. Further, any proc
ess involving a large Eo will be of negligible 
importance compared with those having smaller 

9 Andrade, Phil. Mag. 17, 497, 698 (1934). 
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energies. The result of this is that for the impor
tant rate processes only a very few degrees of 
freedom will be modified-more profound changes 
being excluded by the Boltzmann factor. In 
chemical reactions this is exemplified by the ex
istence of type reactions which remain almost 
unchanged by profound changes in the molecule 
at distances two or three atoms away from the 
seat of reaction. This fact is of fundamental 
importance for the general mechanical approach 
to rate processes. Here it means that for ordinary 
viscous flow we shall expect the layers to slip 
over each other by one molecule at a time slipping 
past the surrounding molecules into a small hole. 
It would be unnaturally extravagant of energy 
to provide a hole the size of a molecule. 

The partition function Fn for the normal state 
contains one more degree of freedom than Fa * 
for the activated state. The simplest assumption 
then is that all but this one degree of freedom 
cancels out in the ratio of partition functions and 
that 

Fn/Fa*=(l-exp-hvi/kT)-I, (17) 

where Vi is a vibration which can be estimated 
from the specific heat of the liquid. The existence 
of an activation energy for flow is the best pos
sible justification for treating this additional de
gree of freedom in Fn as a vibration rather than 
a translation. In some cases Vi may be fairly 
large in which case Fn/ Fa * ~ 1. By trying this 
latter approximation for this ratio and taking the 
transmission coefficient JC = 1 (which must in 
general be a very good approximation) (10) be
comes: 

7]= e>'qh/X2A2Aa) exp (Eo/kT). (18) 

If the distance A between minima for the moving 
molecule is taken equal to AI, the distance be
tween layers, we get finally that 

7]= (Nh/V) exp (Eo/kT) , (19) 

where N is Avogadro's number and V is the 
molal volume. Now if for the molal volume we 
take as a rough average value V = 39.6 cc in 
order to get (19) in round numbers we obtain 

7]= 10-4 exp Eo/kT). (19) 

The constant factor 10-4 is about one-quarter to 
one-fifth of Andrade's values for about seventy 
of his hundred odd examples. Now the factor 

(17) which has been neglected is necessarily 
greater than 1 and at T= 3000 absolute it be
comes equal to 4 and 5 for the respective values 
1.8 X 1012 and 1.4 X 1012 for Vi. This is about the 
values for the frequencies which Lindemann's 
theory for melting leads to. These frequencies 
can also be estimated from the vapor pressures 
of the liquids and from the specific heat Cv if we 
assume the expression (1-exp-hv;jkT)-3 for the 
three "translational" degrees of freedom. The 
values obtained in this way are also of about the 
right size to account for these properties. 

Thus for non associated liquids the formula 

Nh exp (Eo/kT) 
(20) 7]=---------

v( 1-exp ( - :7)) 
seems satisfactory where Vi can be chosen to fit 
the viscosity at a particular temperature or esti
mated from some other property as mentioned 
above. Instead of treating this partition function 
as a vibration we can, of course, treat the liquid 
molecule as though it were moving in a box of 
length d where we can think of da as the "free 
space" per molecule. In this way we get 

Fn/ Fa * = (27rmkT)!d/h (21) 
and 

'YJ = (Nd/ V) (2rrmkT)t exp (Eo/kT). (22) 

Again reasonable values for d give agreement 
with experiment. The cases which do not agree 
with (20) and (22) fall into two categories. First 
those in which the activation energy is very small 
so that the condition that the molecule remains 
in a minimum long enough to dissipate and then 
reacquire the activation energy before continuing 
the journey is not fulfilled. These, however, are 
the cases to which the momentum transfer theory 
as developed by Andrade apply. The other ex
amples are those which Andrade classifies as 
associated. Here he gets lower values for this 
constant. That this should be so follows imme
diately from (10) since Fn the partition function 
for the normal state is decreased by association 
more than Fa*, and the activation process will 
now involve dissociation with a correspondingly 
high activation energy. This is another example 
of the general phenomenon in reaction rates that 
with an abnormally high Eo there is in general 
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associated an abnormally high Fa * / Fn. The reason 
is that the large Eo arises from loosening an 
abnormally large number of bonds (or from 
loosening very strong bonds) and this alltomat
ically means a large value for the ratio Fa * / Fn. 
This same situation is familiar in equilibrium 
processes. 

COMPARISON WITH OTHER EQUATIONS 

\Ve now consider the value of Eo. The energy 
required to provide a hole in the liquid has 
already been related to the vapor pressure and 
this as well as the energy for an atom to pass 
over the energy barrier is, of course, related to 
the internal energy plus the energy required to 
overcome the external pressure. Following An
drade and BridgmanlO we assume it is at least 
approximately of the form Eo= (p+a/v2)s where 
we write van der Waals equation as (p+a/v2

) 

x(v-b)=RT, s is of course a volume, and the 
other quantities have their usual meaning. Sub
stituting in (19) we have 

1]= 

(p+a/v2) s 
Nhexp----

RT 

V( 1-exp ( -~~) ) 
s 

Nhexp-
V-b 

V(l-exp ( -:i)) 
(23) 

Now not too far below the critical temperature 
where s/(V -b) is small we can write 

s s V-b+s 
exp--=1+--

V-b V-b V-b 
and 

Nh(V-b-s) 1 c' 
1]= --~-- (24) 

V(1-exp -(hll;/kT)) V-b V-b 

Batschinskill proposed an equation of just the 
form of (24) where c' is a constant. As a matter 
of fact he used the specific volume as we can do 

10 Bridgman, The Physics of High Pressure (Macmillan), 
p.356. 

11 Batschinski, Zeits. f. physik. Chemie 84, 643 (1913). 
See also Hatschek, The Viscosity of Liquids (G. Bell & Sons), 
Chapter V. 

also by simply dividing numerator and denomi
nator by the molecular weight. He obtained very 
good agreement with experiment for all non
associated compounds. Inspection of Andrade's 
Table IV indicates that the ratio s / (V - b) in 
Eq. (23) should be in the neighborhood of two 
or three for most of the substances provided they 
are nonassociated and are not too near the criti
cal temperature. Now from experiment as well 
as from the theory of holes V - b is about half 
the critical volume, Vc, at temperatures corre
sponding to low vapor pressures and b = Vc/3; 
so that if s is taken equal to b we have s/(V-b) 
= b / (V - b) ~ 2. In other words for nonassoci
ated liquids Eo/kT is approximately the volume, 
b, occupied by the molecules themselves divided 
by the volume occupied by the holes, V-b. This 
last interpretation in spite of its attractiveness 
should not be taken too seriously, however, since 
b of van der \Vaals' equation has no very precise 
meaning in terms of molecular strlll':ture and is 
much smaller than we would deduce for example 
by equating V - b, the volume occupied by holes 
in the liquid, to the volume occupied by the 
molecules themselves in the vapor phase. This 
last comparison is suggested by the theory of 
holes. 

It is interesting to compare (9) with Maxwell's 
equation12 for viscosity 'Ij = €T where € is the elas
ticity and T is the relaxation time. Doing this 
gives the equalities T=1/k 1 and €=A1kT/A2A2A3 
~ kT /A3. Thus we see that Maxwell's elasticity 
can be thought of as the pressure exerted by a 
molecule restricted to its actual volume in the 
liquid if it obeyed the perfect gas law. 

PLASTICITY AND THE BEHAVIOR OF VISCOSITY 

FOR LARGE SHEARING FORCES 

From Eq. (8) we see that viscosity is inde
pendent of the shear only when the work done 
by the applied force in carrying a molecule over 
the barrier is small compared with kT. In cases 
where a fairly rigid structure is being disrupted 
as for example in certain gels13 and in glasses or 
crystals (8) must be used instead of (10). Ex
panding sinh (fA2A3A/2kT) in (8) and dividing the 
f out we obtain 

12]. C. Maxwell, Phil. Mag. 35,133 (1868). 
13 Hatschek, The Viscosity of Liquids, Chapter XII. 
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1 (jA2A3A) 4 )-1 +- -- + ... , 
120 2kT 

(24) 

which is the limiting viscosity for zero force 
divided by a sum of even powers of jA2A3A/2kT. 
(24) explains the generally observed fact that the 
viscosity decreases with the shearing force. This 
decrease might be expected to manifest itself 
particularly strongly in colloidal solutions which 
are inhomogeneous since then the stress concen
trates on the resisting structure and the work 
P'A2A3/2 done in surmounting a potential barrier 
may approach or even exceed kT in magnitude. 

In cases where jAA2A3/2»kT we may even 
neglect kb in comparison with k j in which case 
we can write (8) in the form: 

(25) 

Let us now consider the rate of release of the 
strain j in a glass at a temperature below the 
softening point. If to release the strain each 
molecule must on the average surmount m bar
riers and if the average time, t, to surmount a 
barrier is the relaxation time r = 1/ kf then: 

(26) 
dt mr m mA7) 

This dependence of the time derivative on the 
square of the stress for glass has been observed 
by Adams and Williamson,u Hamptonl5 has de
termined experimentally that the constant which 
we have written as AI/mA in (26) has the value 
1000 for glass if the measured viscosity 7) for 
flow is used. This factor might arise in several 
ways. First, for example, the release of stress 
may proceed by some other relaxation than 
flow so that a different relaxation time (or vis
cosity) say that for rotation should be used. This 
still would give the same dependence on force 
squared but in that case a different 7) should be 
used. A second possibility is that the sfrain in 
the glass is such that the gth layer (each of thick
ness AI) normal to the planes of flow is strained 

14 Adams and Williamson, J. Frank. Inst.190, 619 (1920); 
Adams, ibid. 216, 39 (1933). 

15 Hampton, Trans. Opt. Soc. London 27, 173 (1925-
1926). 

a distance A with respect to the first layer along 
the direction of flow. This strain can then be 
released by a displacement of an amount A of any 
one of the g molecules lying in the direction in 
which Al is measured or by an average displace
ment of m= l/g of all of them. If g equals a 
thousand or more precisely if AI/mA= 1000 we 
obtain Hampton's result. Thirdly this same aver
age relaxation time of 7/1000 would be obtained 
if in the cooled glass a thousand molecules jump 
together with the same relaxation time that one 
jumped under the circumstances for which 7) was 
measured. The fact that quite generally solids 
have only about 1/1000 the tensile strength that 
might be expected theoretically has been ex
plained as due to the fact that large groups of 
atoms move together with no more shearing force 
than would be expected for one. Polanyi l6 has 
pointed out that if due to strain the first and 
(n+ 1)st atom in one row coincides with the first 
and nth in a second row where in each row they 
are uniformly spaced then one group can be dis
placed with respect to the other with l/nth the 
energy required when the n atoms in one layer 
coincide with n in the other. In any case the law 
dj/dt = constant F/7) is to be expected whenever 
the stress is large. 

"Vhen the stress is small we expect 

Here we have used (9) to determine the relaxa
tion time r= l/k l • Hence for small stresses dj/dt 
=constantj /7). Some cases will no doubt approxi
mate the two extremes while others will be 
intermediate. The absolute reaction rate theory 
thus seems to give a very satisfactory account of 
viscosity and plasticity. For the latter it yields 
relations at least very similar to those of Prandtl, 
Becker, Orowan, G. I. Taylor and Polanyi as 
presented in their papers and which W. G. and 
J. M. Burgersl7 have summarized along with their 
own ideas in a recent report on elasticity and 
plasticity. Hysteresis and polymorphic transfor
mations like any other reactions can be treated 
by the general theory but in each case we must 
secure the potential energy surface or the equiva
lent in other information. 

16 Polanyi, Zeits. f. Physik 89, 660 (1935). 
17 W. G. Burgers and J. M. Burgers. Verh. Akad. 

Amsterdam (1) 15, Chapter V (1935). 
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DIFFUSION 

We assume the concentration gradient is in the 
x direction and is equal to dcI! dx and further that 
the distance between two successive minima for 
the diffusing molecules is A. Then if the concen
tration at one minimum is C1 that at the next 
minimum in the positive direction is C1+AdcI!dx. 
Now the number of molecules of type one passing 
through the y, z plane per square centimeter in 
the positive x direction is NAk 1C1 and in the re
verse direction NAk 1(C1+dcI!dx). The excess pro
ceeding in the negative x direction is DNdcI!dx 
= NA2k1dcd dx. Thus the diffusion coefficient is 

(28) 

N is again Avogadro's number and the other 
quantities have also been defined. The net flow 
in one direction of molecules of one kind is of 
course compensated for by the corresponding flow 
in the reverse direction of other types of mole
cules. This treatment only applies when the 
molecules are of approximately the same size. If 
for example one type of molecule is very much 
larger than the other it is customary to assume 
that the large molecules behave like very large 
balls around which the smaller molecules stream. 
Then Stokes18 equation x=X/67rr7J applies to the 
large molecules where:t, r and X are the velocity, 
radius and force acting on one of them and 7J is 
the viscosity of the small ones. The osmotic force 
acting on the large molecule is X = - V 
X (dc/dx)NkT; so that the excess of large mole
cules passing in the positive x direction per cm2 

per second is 

:t kT dC1 dC1 
- = ---N= -D-N, (29) 
V 67rr7J dx dx 

which gives the well-known relationship 

D=kTj67rr7J. (30) 

The definition of all the quantities is the same 
used previously where C1 is the concentration of 
the large molecules in moles per cc and V is the 
reciprocal of the number of these large molecules 
per cc. 

On the other hand for molecules of the same 
size where (9) and (28) apply we obtain: 

D=A1kT/A2A37J. (31) 

18 C.L Herzfeld, Kinetische Theory der Wiirme (M iiller
Pouillets Lehrbuch der physik., 1925), Chapter VII. 

Thus (30) and (31) each have a well-defined 
region in which they do and do not apply. There 
is an intermediate region which requires closer 
consideration, and which we hope to consider 
further at another time. We now apply (31) to 
the diffusion of heavy into light water. Orr and 
Butler19 give for this diffusion coefficient 1.46 
X 10-5 at O°C and 4.75 X 10-5 at 45°e. The vis
cosities at these two temperatures given by 
Landolt-Bornstein are 0.0179 and 0.00667, re
spectively. Substituting in (31) we obtain for 
A2Ae/Al at 0° the value 1.43 X 10-7 and at 45°C 
the value 1.38 X 10-7 cm. Now the geometrical 
mean of the A'S is (A1A2Aa)l=(18/N)t=3.1X10-8 
cm. Combining these values we find that at 45°, 
Al = 1.47 X 10-8 and (A2Aa) t = 4.50 X 10-8 cm, while 
the values for zero degrees give Al = 1.44 X 10-8 

and (A2AZ)!=4.54X10-8 cm. This is precisely the 
kind of result that would be predicted since from 
general principles we expected that in viscous 
flow the plane of the H 20 molecule would tend 
to coincide with a plane of flow, i.e., that Al 
would be the thin dimension of H 20. In our 
calculation we have used the viscosity of H 20 
whereas we should have used a value intermedi
ate between that of H 20 and the value for pure 
D 20 which is about 30 percent higher than the 
former. Such a correction would decrease some
what the ratio (A2Aa)IA1-1 but would leave our 
general result unchanged. Thus we apparently 
have a very suggestive check of the theory. Eq. 
(30) on the other hand leads to the unreasonably 
small values for 2r of 1.46 X 10-8 cm at 45° and 
1.56 X 10-8 cm at O°e. 

In electrical conductance the use of (30) for 
the diffusion coefficient certainly tends to give 
too low results for ionic mobility and is only 
justified if the ions are very much solvated or for 
other reasons very large as compared with the 
solvent. If the ions are of the same size as the 
solvent we should use (31) and in any case for 
large potential gradients we should use 7J in the 
form (8) or (24) where f is now the force acting 
on the ion due to the applied potential modified 
of course in the usual way by the other charges. 

I want to thank Mr. R. H. Ewell for calling 
my attention to the interesting nature of the 
problem of viscosity. 

19 Orr and Butler, J. Chem. Soc. 1273 (1935). 
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