Basic 2D NMR experiments

Dr. E. Manolopoulou, NMR, Lab, Dept of Chemistry, Univ. of Crete, March 2019

¹H-¹H COSY

PRELIMINARY SET-UP

- 1. Insert the sample to the spectrometer
- 2. Choose the right deuterated solvent with lock command
- Create a new dataset (edc) and read the standard BRUKER parameter set (rpar) to record a conventional ¹H spectrum with rpar PROTON all (the pulse program zg30 can be visualized in the PulsProg section or with the edcpul command).
- 4. getprsol: Get probe and solvent dependent parameters (corresponding pulses and power levels)
- 5. Tune and match the probehead (atma or atma exact)
- 6. Optimize the shim procedure (read an optimized shim file with the **rsh** command and perform shimming)
- Record a typical ¹H spectrum. Note the SW values to optimize spectral widths in the corresponding 2D experiment.

8. Create a new dataset with **edc** (or <u>read and copy a pre-existing</u> <u>experiment</u>) and read the standard BRUKER parameter set (**rpar**) to record a 2D ¹H-¹H COSY-45 spectrum with **rpar COSYGPSW all** (the pulse program **cosygpqf** can be visualized in the **PulsProg** section or with the **edcpul** command)

9. getprsol: Get probe and solvent dependent parameters (corresponding pulses and power levels for the current experiment)
10. COSY experiments must be run without sample spinning

SPECIFIC PARAMETERS (acqupars)

By default, the following parameters are set to: 2 td in F2 (1K-2K), 1 td in F1 (128w- 256w) ns=8, ds=4 1 sw= 12, 2 sw =12 d1=2

ACQUISITION

11. Set the appropriate **ns** and **ds** for the experiment

12. Start acquisition by <u>rga</u> and then <u>zg</u> (the expected experimental time is displayed with the <u>expt</u> command).

PROCESSING

13. Process the recorded data with xfb

14. The resulting 2D spectrum can be symmetrized by using the sym command.

¹H-¹H COSY with presaturation

PRELIMINARY SET-UP

- 1. Perform steps **1-7** as previous
- 2. Find the o1 of the solvent resonance
- 3. Put the solvent peak on-resonance by:
- a. expand about the solvent peak enough that you can easily see the center
- click \$\\$ and then left-click with the cursor in the middle of the solvent peak
- c. choose o1
- d. Write down the value for o1 in Hz.

4. Create a new dataset (edc) (or <u>read and copy a pre-existing</u> <u>experiment</u>) and read the standard BRUKER parameter set (**rpar**) to record a 2D ¹H-¹H COSY spectrum using presaturation change the pulse program to **cosygpprqf** that can be visualized in the **PulsProg** section or with the edcpul command).

5. **getprsol:** Get probe and solvent dependent parameters (corresponding pulses and power levels for the current experiment)

On the command line, type "**o1**" in the solvent frequency that you get from the previous experiment

SPECIFIC PARAMETERS (acqupars)

By default, the following parameters are set to: 2 td in F2 (1K-2K), 1 td in F1 (128w- 256w) ns=1, ds=8 1 sw= 12, 2 sw =12 d1=1.5-2s pl9=55-60dB ACQUISITION

7. Set the appropriate **ns** and **ds** for the experiment

8. Start acquisition by <u>rga</u> and then <u>zg</u> (the expected experimental time is displayed with the <u>expt</u> command).

PROCESSING

9. Process the recorded data with **xfb**

10. The resulting 2D spectrum can be symmetrized by using the sym command.

¹H-¹³C HSQC phase-sensitive

HSQCETGPSI (hsqcetgpsi) – simple gradient HSQC, non-Edited, sensitivity improved (si).

PRELIMINARY SET-UP

- 1. Run a **conventional** ¹**H spectrum**. Note the **o1p** and **SW** values to optimize spectral widths in the corresponding 2D experiment
- 2. If required, record a ¹H-decoupled ¹³C spectrum
- Create a new dataset (edc) (or <u>read and copy a pre-existing</u> <u>experiment and skip step 2</u>) and read the standard BRUKER parameter set to record a phase-sensitive ge-2D ¹H-¹³C HSQC spectrum. Change the pulse program to <u>hsqcetgpsi</u> can be visualized in the **PulsProg** section or with the <u>edcpul</u> command).

🖕 Create New Dataset - new		23					
Prepare for a new experiment by creating a new data set and initializing its NMP parameters according to the selected experiment type			File Options Help Source =				
For multi-receiver experiments several datasets are created. Please define the number of receivers in the Onlines			Find file names venter any string, *, ? Exclude:				
Dataset			Class = Any Dim = Any Show Recommended				
NAME			Type = Any SubType =				
EXPNO 11	1						
Directory) 🔹		HNNHDIGP3D HRMAS_1D HRMAS_1D HRMAS_1DD HRMAS_2DH				
Open in new window			HRMAS_2DJ HRMAS_2DT HSQC_CES HSQC_HECA HSQC_TOCSY				
Parameters			HSQCDIEDE HSQCDIETF HSQCDIETG HSQCDIETG				
Use current parameters			HSQCEDETGPHSQCEDET HSQCEDET HSQCEDET HSQCEDET				
Bead parametersat		act	HSQCEDET HSQCEDET HSQCEDET HSQCEDET HSQCEDET				
Read parameterset	36	cet	HSQCETEXF HSQCETF3GP HSQCETF3 HSQCETF3 HSQCETF3				
Set solvent	Acetic		HSQCETF3 HSQCETFPF HSQCETFP HSQCETGP HSQCETGP				
Additional action			HSQCETGPMLHSQCETGP HSQCETGP HSQCETGP				
O nothing			HSQCETGP HSQCETGPSI HSQCETGP HSQCETGP HSQCETGP				
Execute getprosol			HSQCETGP HSQCETGP HSQCETGP HSQCETGP				
Keen parameters P 1	01 PLW 1 Change						
o noop parameters [11,	on the ondige		Set selected item in editor Close				

4. **getprsol:** Get probe and solvent dependent parameters (corresponding pulses and power levels for the current experiment)

- 5. HSQC experiments must be run without sample spinning
- 6. Tune and match the probehead (atma)

ACQUISITION

7. Set the appropriate **ns** and **ds** for the experiment

8. Start acquisition by <u>rga</u> and then <u>zg</u> (the expected experimental time is displayed with the <u>expt</u> command).

By default, the following parameters are set to: 2 td in F2 (1K-2K), 1 td in F1 (64w-256w) ns=96, ds=16 1 sw= 250 ppm (F1), 2 sw =12 ppm (F2) d1=1.5-2s

PROCESSING

9. Process the recorded data with xfb10. The resulting 2D spectrum can phase and baseline corrected by apk2d and abs1, abs2

1H-13C long range coupling HMBC

HMBCGP (hmbcqplpndqf) – Gradients for coherence selection (gp), low pass filter (lp), no decoupling during acquisition (nd), and magnitude mode (qf). Simple and no 180° pulses.

PRELIMINARY SET-UP

- 1. Run a **conventional** ¹**H spectrum**. Note the **o1p** and **SW** values to optimize spectral widths in the corresponding 2D experiment
- 2. If required, record a ¹H-decoupled ¹³C spectrum (**o2p, SW**)
- Create a new dataset (edc) (or <u>read and copy a pre-existing</u> <u>experiment and skip step 2</u>) and change the pulse program to <u>hmbcgpndqf</u> in the **PulsProg** section or with the edcpul command.

 Utile Control Continuation.

 ● Use current parameters

 ● Experiment

 ● Options

 ♥ Set solvent:

 ● Execute "getprosol"

 ● Keep parameters

 P 1, 01, PLW 1 • Change

Pulse Programs				
File Options Help	S	ource = C:\Bruker\	TopSpin4.0.6\exp\sta	an\nmr\lists\pp
Find file names -	enter any string, *,	? Exclude:	0	lear
Class = Any	▼ Dim =	Any 👻	Show Recommend	ed
Type = Any		 SubTyp 	e = Any	-
hNhhC.cp	hnnhdigp3d	hoesyesgpph	hoesyetgp	hoesyetgp.2
hoesygpph	hoesyph	hoesyqfrv	hpdec	hpdec_f2f3
Hpulsecal.90	hsqc_cest_etf3g	hsqc2ht1fpgpph	hsqc2ht1fpgpph	hsqc2ht1fpgpphv
hsqc2ht1fpgpph	hsqc2htrfpgpphtc	hsqc2htrfpgpphtc	hsqc2htrfpgpphtc	hsqc2htrfpgpphw
hsqcbietgpjcmqsp	hsqcbietgpjcsp	hsqcbietgpjcsp.2	hsqcccf3gpphwg	hsqccoetgpiajcIrr
hsqcctetgpjc	hsqcctetgpjclr	hsqcctetgpsisp	hsqcctetgpsisp2h	hsqcctetgpsispxf
hsqcctetgpsp	hsqcctetgpsp.2	hsqcdhetgpsp	hsqcdiedetgpsisp.1	hsqcdiedetgpsisp
	have a start of the second	to a second to have be to have	headistaniasion	beacdietapicpdsis
hsqcdiedetgpsisp.3	insqcalett3gpsl	insqcdietgplajcirn	nsqculetgplasisp	insquaretypjenusi.
hsqcdiedetgpsisp.3 hsqcdietgpsi	hsqcdietgpsisp	hsqcdietgpiajcirn	hsqcdietgpsisp3d.2	hsqcedetf3gpsi
hsqcdiedetgpsisp.3 hsqcdietgpsi hsqcedetf3gpsi2	hsqcdietgpsisp hsqcdietgpsisp	hsqcdietgpiajcim hsqcdietgpsisp.2 hsqcedetgpsisp	hsqcdietgpsisp3d.2 hsqcdetgpsisp.2	hsqcedetf3gpsi hsqcedetgpsisp2

4. getprsol: Get probe and solvent dependent parameters (corresponding pulses and power levels for the current experiment)
5. HMBC experiments must be run without sample spinning
6. Tune and match the probehead (atma)

ACQUISITION

7. Set the appropriate **ns** and **ds** for the experiment

8. Start acquisition by <u>rga</u> and then <u>zg</u> (the expected experimental time is displayed with the <u>expt</u> command).

SPECIFIC PARAMETERS (acqupars)

By default, the following parameters are set to: 2 td in F2 (1K-2K), 1 td in F1 (64w-256w) ns=2, ds=16 1 sw= 250 ppm (F1), 2 sw =12 ppm (F2) d1=1.5s ,d6=65 ms

PROCESSING

9. Process the recorded data with xfb10. The resulting 2D spectrum can baseline corrected by abs1, abs2

¹H-¹H Noesy

PRELIMINARY SET-UP

- Run a **conventional** ¹H **spectrum**. Note the **o1** and **SW** values 1. to optimize spectral widths in the corresponding 2D experiment
- Create a new dataset (edc) (or read and copy a pre-existing 2. experiment) and read the standard BRUKER parameter set (rpar) to record a 2D ¹H-¹H NOESY spectrum with rpar **NOESYPHSW all** (the pulse program **noesygpph** can be visualized the PulsProg in section with or the edcpul command). getprsol: Get probe and solvent dependent parameters (corresponding pulses and power levels for the current experiment)
- 3. NOESY experiments must be run without sample spinning
- Tune and match the probehead (atma) 4.

ACQUISITION

5. Set the appropriate **ns** and **ds** for the experiment

6. Start acquisition by rga and then zg (the expected experimental time is displayed with the **expt** command).

PROCESSING

- 7. Process the recorded data with **xfb**
- 8. The resulting 2D spectrum can baseline corrected by abs1, abs2

noesvapph

SPECIFIC PARAMETERS (acqupars)

By default, the following parameters are set to: 2 td in F2 (1K-2K), 1 td in F1 (128w-256w) **ns**= 2, **ds**=16 d1 =2s, d8 (NOESY mixing time)= 0.1-0.2s (for large

molecules and 0.4-0.5s for small ones)

Bibliography

https://nmr.ucdavis.edu/sites/g/files/dgvnsk4156/files/docs/ucdavis-topspin3.2-userguide-october2015.pdf

1D and 2D Experiments Step-by-Step Tutorial. Basic Experiments User Guide (Version 004) Bruker

1D and 2D Experiments Step-by-Step Tutorial Advanced Experiments User Guide (Version 002) Bruker

http://www2.chem.uic.edu/nmr/downloads/BASHCD10/pdf/b4472.pdf