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Lipid–protein interactions 

1. protein–water interactions 
2. protein–protein interactions  
3. protein–lipid tail (hydrophobic core) interactions 
4. protein–lipid head group (bilayer interface) interactions

human glycophorin A 

bacteriorhodopsin



Aromatic side chains as membrane anchors
tyrosine, phenylalanine, tryptophan



132 CHAPTER 3: Interactions of Peptides with Lipid Bilayers   

3.4.8  Side Chain Snorkeling Is Impor tant  in  

Transmembrane Helix–Bilayer  Interact ions

Membrane proteins are enriched in the membrane interfacial region with tryp-
tophan, tyrosine, arginine, and lysine. is is not unexpected, because Trp and 
Tyr have a particular a nity for the interface (Figure 3.11), and Arg and Lys have 
strong interactions with phosphate groups. If the a nities are strong enough, 
it would be reasonable to think that the peptide and the lipids would arrange 
themselves to optimize these interactions. is is exactly what is observed by 
31P NMR (Figure 3.31A). e two peptides WALP16 and KALP16 are identical 
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Figure 3.31  Aromatic and basic residues snorkel into the bilayer interface. (A) NMR spectra reveal the appearance of hexago-

nal H
II
 phase for the WALP16 peptide in DOPC but not for the KALP16 peptide. This implies different effective lengths of the two 

peptides even though their hydrophobic domains are identical. The logical explanation is that the long, flexible lysine side chain 

can “reach” easily for the lipid phosphate group, making the peptide effectively longer. (B) A schematic representation of the dif-

ferences in snorkeling by aromatic and basic residues. (C) Molecular dynamics simulations reveal how bilayers might distort in the 

vicinity of arginine residues in order to optimize arginine–phosphate interactions. The simulations also reveal that the phos-

phate–arginine interaction can be mediated by carbonyl groups and water. (A, From Maurits RR, de Planque MRR, Kruijtzer JA et al. 

[1999] J Biol Chem 274: 20839–20846. With permission from Elsevier. B, From Killian JA, von Heijne G [2000] Trends Biochem Sci 

255: 492–433. With permission from Elsevier. C, From Schow EV, Freites JA, et al. [2011] J Membrane Biol 239:35–48.)
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G Gly, P Pro, L Leu, R Arg



Interactions of helices in lipid bilayers



van der Waals contacts. Small 

residues (orange and yellow) 

increase the homodimer interface 

and allow for extensive van der 

Waals contacts in human 

glycophorin A Hydrogens are 

shown for Gly residues only

Salt bridges. Lys358 and Asp237 

are crucial for membrane insertion 

of lac permease from E. coli and 

have been suggested to form a salt 

bridge within the protein’s 

transmembrane region

Interhelical hydrogen bonds. In 

bacteriorhodopsin from 

Halobacterium salinarum Tyr185 

(orange)  of helix 6 and Asp212 

(yellow) of helix 7 form an 

interhelical hydrogen bond (dashed 

line).

Aromatic–aromatic interactions. In 

subunit I of aberrant ba3-cytochrome 

c oxidase from Thermus thermophilus 

Trp110 of helix 4 interacts with Tyr23 

and Leu27 of helix 1, although it is 

partly exposed to the lipid bilayer.



K Lys, R Arg, G Gly, S Ser, D Asp, E Glu, N Asn,  
V Val

Bind to Membranes with the Help 
of Covalently Linked Lipids 



Lateral Pressure



Lateral Pressure



Forced unfolding of membrane-bound BR



Protein–lipid complexes



Specific lipid effects

Lipids can act as co-factor that facilitate the folding or stabilise the structure of membrane proteins

 Diacylglycerol kinase from E. coli, which requires 1,2-dioleoyl-sn- glycero-phosphoglycerol (DOPG) for proper folding. 

 

 Cardiolipin, a four-chain lipid binds to the large mitochondrial membrane protein bovine cytochrome c oxidase and is 
essential for its function. Cardiolipin is explicitly required for association of cytochrome c oxidase subunits IVa and IVb. 

 Several membrane-protein crystal structures show tightly bound lipid molecules and provide valuable insights into how 
these specifically interact with membrane proteins

 The function of KvAP channel, a voltage- dependent K+-channel, depends on certain lipid species.  KvAP senses voltage 
with the aid of Arg-containing structures located at the membrane interface and pointing into the membrane interior

 

 The functional state of KvAP requires POPE or 1-palmitoyl-2-oleoyl-sn-glycero-phosphoglycerol (POPG) and that phosphate 
groups play a crucial role, as their enzymatic removal disrupts function



Oligomerization and clustering of membrane proteins

molybdate transporter

bacteriorhodopsin

photosynthetic reaction center

potassium channel

nicotinic acetylcholine receptor

connexin-26



Oligomerization and clustering of membrane proteins



Membrane active peptides
melittin 



Melittin Insertion into Cell Membranes

Molecules 2019, 24, 1775; doi:10.3390/molecules24091775 



α-Helical ionophoric peptides

Gly-Ile-Gly-Lys-Phe-Leu-His-Ser-Ala-Lys-Lys-Phe-Gly-Lys Ala-Phe-Val-Gly-Glu-Ile-Met-Asn-Ser.



α-Helical ionophoric peptides



Amphiphilic helices 



antimicrobial peptides (AMPs)



Cyclic peptides self-assemble into β-sheet 
type nanotubes



Cyclic peptides self-assemble into β-sheet 
type nanotubes



Monotopic membrane proteins



Monotopic membrane proteins



Lipid-anchored proteins



Lipid anchor types and function



Lateral diffusion is faster for lipid-anchored than for 
transmembrane proteins



figure_03_08.jpg

Peripheral membrane proteins as subunits of protein 
complexes

ATP + H2O + maltoseout   <—>   ADP + phosphate + maltosein

ATP + H2O + maltoseout   <—>   ADP + phosphate + maltosein

http://www.photobiology.info/Yocum-PRC_files/Formula.gif
http://www.photobiology.info/Yocum-PRC_files/Formula.gif


Peripheral membrane proteins as subunits of 
protein complexes
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Peripheral membrane proteins as subunits of 
protein complexes
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Peripheral lipid-binding membrane proteins



Peripheral lipid-binding membrane proteins

pleckstrin homology



Action
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