
Self assembly



Shape in eukaryotic cells

Shape in eukaryotic cells is provided by the cytoskeleton that consists of actin, tubulin, and 
intermediate filaments. 
Bacterial cells come in a variety of different shapes, including spheres, rods, spirals, and 
crescents. 
Shape is important for bacterial cells because it plays a role in cell division, helps to maximize 
the uptake of nutrients, and aids cell movement.



Filaments and microtubules within the cell
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Actin filament



Prokaryotes also have a dynamic, 
filamentous network of proteins, 
which are homologous to the 
eukaryotic cytoskeletal elements. 

In non-spherical bacteria, the 
actin homologue MreB  is 
essential for shape maintenance 
as depletion of MreB through 
genetic knockouts or MreB-
targeted drug treatment results 
in misshapen cells that eventually 
lyse
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Virus Structure

• Size

– 17 nm – 3000 nm diameter

• Basic shape

– Rod-like

– “Spherical”

• Protective Shell - Capsid

– Made of many identical 
protein subunits

– Symmetrically organized

– 50% of weight

– Enveloped or non-enveloped

• Genomic material

– DNA or RNA

– Single- or double-stranded



Virus capsids function in

– Packaging and protecting nucleic acid

– Host cell recognition
• Protein on coat or envelope “feels” or “recognizes” 

host cell receptors

– Genomic material delivery
• Enveloped: cell fusion event

• Non-enveloped: more complex strategies & 
specialized structures
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Nature Reviews 
Immunology volume 20,
pages 363–374 (2020)

https://www.nature.com/nri
https://www.nature.com/nri


The structure of the trimeric spike 
protein of SARS-CoV-2.

Nature Reviews
Immunology volume 20, pages 363–374 
(2020)

https://www.nature.com/nri


Potential therapeutic approaches



Nature Reviews Immunology volume 20, pages 363–
374 (2020)

https://www.nature.com/nri


Icosahedral Symmetry

In 1953, Crick & Watson proposed principles 
of virus structure

Key insight:

Limited volume of virion capsid => nucleic 
acid sufficient to code for only a few sorts of 
proteins of limited size

Conclusion:

Identical subunits in identical environments

Icosahedral, dodecahedral symmetry

In 50’s & 60’s Klug and others confirmed 
that several (unrelated) “spherical” viruses 
had icosahedral symmetry

– (Used negative staining & electron 
microscopy)

• Conclusion:

– Icosahedral symmetry is preferred 
in virus structure



Icosahedral Symmetry

12 vertices

20 faces (equilateral triangles)

5-3-2 symmetry axes

60 identical* subunits
     in identical environments
     can form icosahedral shell
     * asymmetric



But …
• Clear evolutionary pressure to make larger capsid

– Using larger subunits helps very little

– Using more subunits helps a lot

• Not possible to form icosahedral shell (of identical units in identical 
environments) with more than 60 subunits

• Viruses with more than 60 subunits were observed

• In 1962, Caspar & Klug proposed the theory of  “quasi-equivalence”

– Not all protein subunits are equivalent

• “Identical” subunits in slightly different environments

– Only certain numbers of subunits will can be packed into closed regular 
lattice.



X-ray Crystallography of Viruses

• Symmetry of protein shells makes them uniquely 
well-suited to crystallographic methods

• Viruses are the largest assemblies of biological 
macromolecules whose structures have been 
determined at high resolution



Electron Microscopy
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Microscopy



focused ion beam



FIB/SEM tomography of an 
HCMV infected nucleus



Quasi-equivalence

• Subunits are in “minimally” 
different environments

– Pentamers at vertices

– Hexamers elsewhere

• Predicts packing arrangements of 
larger capsids

– Shift from T1 to T4 packing

=> 8-fold increase in volume



Spherical viruses have icosahedral symmetry

Goldberg diagram





Icosahedral capsids 
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interactions between complementary surface 
patches



Helical viruses 
tobacco mosaic virus (TMV



Helical viruses 



Disassembly of TMV 



Assembly of TMV 



Assembly of TMV 



hepatitis B virus life cycle 



small Icosahedral viruses 
hepatitis B virus 



Figure 1. CryoEM and 3D reconstruction of hepatitis B virus (HBV) core assembled from full-length 

HBV core proteins at 3.5Å resolution.

Yu X, Jin L, Jih J, Shih C, Hong Zhou Z (2013) 3.5Å cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein. 

PLOS ONE 8(9): e69729. https://doi.org/10.1371/journal.pone.0069729

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729


Figure 2. Comparisons between corresponding cryoEM structures (green) and crystal structures (red) by 

superimposition.

Yu X, Jin L, Jih J, Shih C, Hong Zhou Z (2013) 3.5Å cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein. 

PLOS ONE 8(9): e69729. https://doi.org/10.1371/journal.pone.0069729

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729


Figure 4. Maps of HBV core reconstruction filtered to 10Å resolution.

Yu X, Jin L, Jih J, Shih C, Hong Zhou Z (2013) 3.5Å cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein. 

PLOS ONE 8(9): e69729. https://doi.org/10.1371/journal.pone.0069729

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069729


neutron diffraction 

tomato bushy stunt virus (TBSV) 



assembly and maturation of human 
immunodeficiency virus (HIV)





Influenza virus 





Display of proteins on accessory 
proteins of dsDNA bacteriophages



Display of proteins on accessory 
proteins of dsDNA bacteriophages



Display of an Ig domain

flock house virus



Display of green fluorescent protein 
at the tips of HBV capsid spikes 



Generation of  protective 
vaccines 
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