Protein Interactions in vivo
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Protein Interactions in vivo
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K../Ky 18 the catalytic efficiency. It is used to rank enzymes. A big
K../Kiy means that an enzyme binds tightly to a substrate (small Ky,),
with a fast reaction of the ES complex.

collision rate

K../Kyy 1S @an apparent second order rate constant
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Figure 4.1 How Proteins Work (©2012 Garland Science)



TABLE 4.1 Values of kcat/Km, for some enzymes

Enzyme [ Substrate | btk (0757

Acetylcholinesterase Acetylcholine 1.5 16°
Carbonic anhydrase Carbon dioxide 8.3x 10/
Catalase Hydrogen peroxide 4.0x 108
Fumarase Fumarate 1.6 x 108
Fumarase Malate 3.6 %107
Superoxide dismutase Superoxide 2.8%x10°
Triosephosphate isomerase Dihydroxyacetone phosphate 7.5 % 1P
Triosephosphate isomerase Glyceraldehyde 3-phosphate 2410
Lysozyme (NAG-NAM); 83

Glucose isomerase Glucose 7.4

Abbreviation: NAG-NAM, N-acetylglucosamine—N-acetylmuramic acid disaccharide.

Table 4.1 How Proteins Work (©2012 Garland Science)
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Cytochrome c
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Figure 4.5 How Proteins Work (©2012 Garland Science)



Electrostatic steering

Cytochrome c
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Complex structure of cytochrome c—cytochrome ¢ oxidase reveals a novel protein—protein interaction mode
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The EMBO Journal, Volume: 36, Issue: 3, Pages: 291-300, First published: 15 December 2016, DOI: (10.15252/embj.201695021)



Complex structure of cytochrome c—cytochrome ¢ oxidase reveals a novel protein—protein interaction mode

The EMBO Journal, Volume: 36, Issue: 3, Pages: 291-300, First published: 15 December 2016, DOI: (10.15252/embj.201695021)
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OUWITAEYHA OUVAVTINONG

encounter complex

(b)

Figure 4.6 How Proteins Work (©2012 Garland Science)



OUWITAEYLLOL CUVAVTNONG

A View from periplasmic side Binding side Nonbinding side

Chlorosome baseplate

Xie, H., Lyratzakis,A et al. PNAS 2023



barnase with inhibitor barstar

Gottschalk /Journal of Structural Biology 171

(2010) 52-63



inside of a cell

Figure 4.9 H.,,,,.;m.e;,.swmk(@mma,;a,.;, Séiance] - ' Figure 4.10 How Proteins Work (©2012 Garland Science) Figure 1.35 Molecular Biology of Assemblies and Machines (© Garland Science 2016)




volume exclusion

TRENDS in Biochemical Sciences Vol.26 No.10 October 2001



relative sizes

The collision rate thus
depends most critically on the
size r of the diffusing
molecule:
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Find the partner

Processivity decreases the off-rate from
polymeric substrates
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Glycogen

Table

Overview of differences in gly cogen bevel s and metabolism in brain, skel etal muscle, and liver
S eation of different tissues and cells types has led to the diversidcation of glycogen metabolism regulation. An overview of the main diferences In glycogen content, Inter- and ntracellular localization, and

en-related regalatory eszyme expeession In brain, muscle, and bver are presented.

Attribates Brain Skeletal muscle Liver

Average particle sze [Imner diameter, sem) lo-30 10-40 110-290

Glyvogen concentration (heman, pmollg wet weight)  3-10 30-100 H00-500

Estimated % of tswe wesght 0l 1-2 648

%ﬂiﬂ;ﬂ:ﬁhmconum (humam, fed state, g) :.S-I.S| " 10 ; 400

Issue localization ?- variability. Gray matter > white matter Muscle type-dependent. Type [1 > type | Unifoem

Celludar 'subcelbalar localization Cell-dependent, highest in es. Greater imareas with  Subsarcolemmal > myofibrillar Hepatocytes. subcellular location modalated
high synaptic density, primary branches by metabolic conditions
and fine processes

Glycogenin Boform GN1 GNI1 GN2

Glycogen phosphorylase soleem GFB GPM PGPL

GPM
Ghlycogen synibase isolorm GSl Gs1 G52

J. Biol. Chem. (2018) 293(19) 7089 —7098



THEMATIC MINIREVIEW: Crvnamic iife of the glycogen granwle

Glycogen granule and
the actin-rich spherical
structures y-pattich
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Glycogen associated proteins

Prim ary proteins in the glycogen granule proteome and their interactions

List of main busmnan glyc oo -associated proteing ax identified by same and UNIPROT identfier (102) as well 3= prisnary imteraction s relevant to glycogen mwtabolism. Protein—protein imteractions were derived from databases
withim UraProt (uniprot. org) (804, mainly The Biclogical General Repository for Interaction Datasets (BioGaid) (31} and the Protein [nteraction Database and Analyss System (ImeAct) (K2}, Abbreviations used are as follows:
AMPK, 5'- AMP-actwvated protein lamases EMP2A, laforin; GBE, bran enxyme GDE, debranching enzyme; GN, ghwogenims GP, ghycogen phosphonyiase; GS. glycogen synthase; PRK, phosphoryhse kmases PPL, protein
phosphatase; STDE ), starch-banding domam-contameng protein 1: TRIMY, snpartite matif-containing protein.

Protein Role UmiProc 1D Key ghycogen related imteractions
Glycogenin (GN) Initkation P46976 IGN1, musclel 015483 [GNL, liver) G5 AMPK. GBE, GP, STBDY, PP1 (PPPIR3IC, PPPICA. PPPIRS) TRIM7T
Trpartite motif-contaming protes (TRIM?, GNIP} nitintion, regulation QO00X9 TRIMT) GN
Qycogen syathise (GS) Synithesis PI13807 1GS5], musde) PS4340 (G52, lives) GN, AMPK, GBE, PP1 (PPIR2R PPPIRIC, PPPICA), STEDL, KAPCA,
CSK2], MAPKAPKD, GSK3, PAST, laforia, MLPEB/AC, DYRK
Gycogen branching enzvme IGKL) Swnthesis Q044 GP, G5, GN, STHRD1, GBE, VAPA
Glycogen phasghory b (GP) Degradation Fl%g{%mhh )] P11216 (FYGE, beain| AMPK, PKC, GBEL, PP2, MAPKAPKYZ PPL
Gycogen debranching enzyme IGDE, AGL) adation PI5573 AMPK. PPL. malin, AMPK. STBIM
Malin (3 ubiqutin-protein ligese NHLRC1) e ligaos Q6VYE] Lafonm, GS, PP, GDE, AMPK
5'- AMP-activated peoleia knase (AMPK) Kinase P53646 |a2) QY473 (51) 043741 (B) Laforis, PPL (PPP2CA, PPP2RIB), PHRGL, CAMK GN
Lafarin (EFM2A) Chwtb&r;dm; phmphatase, OASITA AMPK, FPLPPPIRIC, PPPIRED), GSKIR, STRD, GS, malim,
Ein ligawse
Protein 1(PPL)and , main el AMPK, haform, GSK3IB, GN, GS
Iupm and catalytc mhlllzl:alhm"r
QL6AZ1 (PPPIRIA, GM) QA6X 16 (PPPLRIB. GL)
QIVCRA (PPPLRIC, PTGl O95685
(PPPLRID, PPPLRE) P67775 (PPPICA)
PE2136 (PPPICA) P0LS4 (PPPIRIA)
mn Kinase (PR} Kinase P15735 (4, lver, testis) Q16ELS (y, muscle) AMPFK, FFL (PFPLR3B), GP
§ lm;n- contaiming Cargo recepeor for ghycogen 045210 GDE, GEE, PP, maka, GN, GS, AMPK, GP, MLPSR/MC
peotein 1 | 1
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Cytosolic glycogen degradation

Find the partner _‘
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Plastics

Plastic .ﬁ.p‘pli:n‘l:i.-n-nl UI-IE'E Time IJ:Er.:.-:I.al:inn Time *®
PET {Polyethylene Bottles and other plastic -
terephthalate) containers 1=3 years A00-1000 years
Huﬁlfl::ﬁ;j:i'}“itf Fipelines, bottles 5-35 years 2505000 years
LIMNE {an—dm'l-il.':r' Mastic wrappers and _
|_:r-r|l:|.-H|1.].rJH|.|=:l b-'IE!li 1-3 YEATS 150 YEATS
PV (Pelyvinyl chloride) ]:iF‘liE::‘tdmr_':';:;"m 35 years = 1000 years
PP (Pal lene) Textiles, packaging, 5-15 years SO-HO0) years
YPTOFY automotive components 2 ¥ ' ¥e
PFH A= Bags, packaging, medical <L yeut

(Foly hidroxyalkanoates) implants




The general structure of PHAs [ | "

* §
& H 0
! (CH2) 100 — 30,000
 chain  [[FS Carbon PHA Abbreviation
Hydrogen Ca Poly(3-hydroxypropionate) P{3HF)
Similar properties to conventional plastics 1 Methyl 4 Poly(3-hydroxybutyzate) PI3HE)
. . Ethyl Cs Foly{3-hydroxywvalerate) PEHV)
* Accumulated in the form of granules N Short ) Hydrogen Cs Polyi4-hydroxybutirate) P{4HB)
microorganisms, as a type of carbon storage ] H”;”“F‘ E :ﬂ:!-’f’r;:?j”“!"‘a:'“ﬂﬂ Eﬁ:::}}
. ) en 5 oy ! roxywalera :
* PHB is the most studied PHA y]‘?nﬁl Co Fﬂ]}r[H-h}rydmx}rhexanmle} P(3HHx)
Butyl i Foly{3-hyvdroxyheptanoate) Fi3HHp)
Pentyl Cs Poly{3-hvdroxvoctanoate) PEIHO)
Hexyl Ca Paly(3-hydroxynonanoate) F{AHN]
1 Heptyl Cin Poly(3-hydroxydecanoate) P{AHDY
Medium Octyl Cn Poly(3-hydroxyundecanoate) PF{AHLITY)
Monyl Ciz Poly(3-hydroxydodecanoate) P{AHDD)
Decyl Cis Poly(3-hydroxytridecanoate) PEAHTLY
Undecyl Cu Poly(3-hvdroxvietradecanoate)  PEHTTLY)
2 Ethyl e Poly{d-hydroxycarpoate) PaHC)
3 Methyl Ca Poly{5-hydroxycarpoate) PSHC)
Ethyl e Polv{d-hydroxyvheptancate) Pi4HH)
Dodecyl Cas Poly{3-hydroxypentadecancate)  P3HPD)
Long 1 Tridecyl Cis Polv{3-hvdroxyvhexadecanocate) P(3HHxD)

Pentadecyl C Poly(3-hydroxvoctadecanoate)  P{3HOLD)

E




Find the partner

I. Kanavaki, A. Drakonaki, E.D. Geladas, A. Spyros, H. Xie, G. Tsiotis,

PHB Depolymerase
Phospholipid :

Monolayer?

+PHB Core

Phasin-*

’

Polyhydroxyalkanoate (PHA) Production in Pseudomonas sp. phDV1 Strain Grown on Phenol as Carbon Sources., Microorganisms. 9
(2021).

A Drakonaki, E Mathioudaki, ED Geladas, E Konsolaki, N Vitsaxakis,, N & Tsiotis, G. Production of Polyhydroxybutyrate by Genetically
Modified Pseudomonas sp. phDV1: A Comparative Study of Utilizing Wine Industry Waste as a Carbon Source Microorganisms 11 (6), 1592
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PHB granule organization

PHE granuky
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PHB granules




Find the partner

Polyphosphate (polyP) is a linear polymer of phosphate
residues linked by energy-rich phospho-anhydride bonds.

R. eutropha

PolyP Granule
(Poly-phosphatosome)



ranules

PonE_hosphate

M. Kudryashev et al. / Biochimica et Biophysica Acta 1837 (2014) 1635-1642



Polyphosphate granules
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Polyphosphate granules
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cellulose fibers in plant cell wall

cellulose
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Figure 4.18 How Proteins Work (©2012 Garland Science)



Searching is faster in
two dimensions
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Searching is faster in two dimensions

a Agonist G protein coupling Activated G protein subunits GTP hydrolysis and
O

binding and nucleotide exchange regulate effector proteins inactivation of Ga protein

N
mmidr
ML ﬂuﬂﬁ%

ii"‘:. I

Reassembly of heterotrimeric G protein



GPCR-mediated G protein activation process

w WEgonist

GTPase activity of Ga subunit

Reassembly of G protein heterotrimer



Searching is slightly faster again in one
dimension

Oct-1 has two DNA-binding domains
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Searching is faster in smaller compartments
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Searching is faster in smaller compartments
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mitochondrial DNA
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Figure 1.5.1b Molecular Biology of Assemblies and Machines (€ Garland Science 2016)



Molecular landscape of Chlamydomona
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Subtomogram average of the native Chlamydomonas
respirasome
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tyrosine kinases receptor
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SH2 domains
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Structural features of
recognition by SH2 domains
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Structural water molecules mediating protein-peptide
Interactions

BRDG1 SH2




(B)

SH3 domains

Figure 4.24 How Proteins Work (92012 Garland Science)
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deactivation and activation of kinases
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Figure 4.35 How Proteins Work (©2012 Garland Science)

proline-serine-threonine-alanine-isoleucine-arginine-glutamate (PSTAIRE)



Src tyrosine kinase

didecdeadsassidneandiesidianndanadtddntandasiddoneadonndasddaannanananEad

N L N 0 X I 0 0 X I G N K L R G G R N K G N X G L RN G I R L X LK R L X L

NH2 (myristoylation) NH2 (myristoylation)

Inactivated Activated

Gterm




Src tyrosine kinase

INACTIVE
ASSEMBLED

kinase domain
M-terminal lobe

Anchor

kinase domain
C-terminal lobe




Active vs Iinactive

(a) active

SH2-kinase linker

PSTAIRE
helix

substrate

activation
loop

(b) inactive

o

steric
interaction

(A) Inactive

RT. SH3

n-Src-_

Front B1 62 B3

(B) Active N



Abl kinase fully activated Ab

transient Abl

autoinhibited Abl

A SH2-kinase
linker

kinase
_domain

active site
(Gleevec)

—1aC ees myristoyl @ Cap® collapsed A-loop extended A-loop © pY in A-loop



Post-translational modifications of proteins

Phosphorylation Ser, Thr, Tyr Regulates activity. Regulates assembly
FNA Acetylation Lys Creates part of histone code in chromatin
m
Methylation Lys Creates part of histone code in chromatin
Ribosome : Methylation Arg
- ﬁ : Hydroxylation Phosphorylation ﬁ —
e Attaches a hydroxyl Adds a phosphate to 8%/ Lipid attachment Cys, Cterminus  Attaches protein to membrane
oH M’ro‘ééi\ group (-_OH] toa s@e serine, threonine or O'Eé?\-.
+ ik el el el iz R SUMOylation Lys Role in transport, transcriptional regulation,
apoptosis
. ﬁ*? - o = = s
ﬁ \ Methylation Glycosylation f A Ubiquitylation Lys Regulates transport and degradation, plus histone
rY Adds a methyl group, Attaches a sugar, usually =g readout
(Me 3 Q! é"‘. usually at lysine or 4 to an "N" or 0" in an o"%&“ﬂ = X ; 7
; : arginine residues 418 " amino acid side chain L Limited proteolysis Activates proteases (zymogens) in extracellular
e\ 7 : location (e.g. chymotrypsin); activates hormones
\‘g ) (e.g. insulin)
ey ﬁ I et LfP?gati°: ) *\‘ ggqu'i;i"a_:iﬂ? o ﬁ — D Attachment of Ser, Thr Regulates activity in enzymes involved in glucose
o % aches a lipid, suc = s ubiquitin to lysine 17 : .
_}-}"“’0‘%&\ as a fatty acid, to a PrOtE| n residue of a target 6. é{\ N-acetylglucosamine metabolism
v protein chain protein for degradation %V . o =
Glycosylation Asn, Ser/Thr Eukaryotes. Recognition, membrane protein
folding
_ Acatylation SUMOylation . ©D Hydroxylation Pro Collage‘n: to facilitate triple helix formation.
ﬁ ; Adds an acetyl group Adds a small protein ‘é ) Irreversible
87, toan N-terminus of a SUMO (small /%
S 0‘%&{‘] protein or at lysine ) ubiquitin-like modifier) o' é{\l ADP ribosylation Arg, Glu, Asp As part of signaling, DNA repair and apoptosis
: residues Disulfide Bond f : to a target protein S
Covalently links the "S” :;& Sulfation Tyr Irreversible and probably required for activity
atoms of two different BBy 5. :
cysteine residues ; N l. ROC K LAND Carboxylation Glu Creates y-carboxyglutamate (Gla), a calcium
[l antibodies & assays o

Table 4.3 How Proteins Work (22012 Garland Science)
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TABLE 4.4 Dependence of half-life
of cytoplasmic proteins on their

N-terminal residue

ubiquitylation e

Met, Gly, Ala, Ser, Thr, Val >20h

Caerminis lle, Glu 30 min
Tyr, GIn 10 min
Pro 7 min
Leu, Phe, Asp, Lys 3 min
Arg 2 min

Table 4.4 How Proteins Work (©2012 Garland Science)
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Lipidation
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Lipidated therapeutics

B) Unnatural Lipidation
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Protein quality control
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self-splicing polypeptides
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catalytic mechanism of the pancreatic
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