Oligomers

In Escherichia coli, the average oligomerization state of proteins is 4. Thus, a protein that exists
as a monomer is a relatively uncommon event.

A survey of human enzymes shows that approximately two-thirds are oligomers.

An oligomeric protein creates some problems in assembly, in that at least two molecules of
protein need to be present in the same place at the same time.

It also makes the protein larger, and therefore less mobile, so there must begood reasons why
proteins have evolved to exist as oligomers
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regulation the accessibility of the active site
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improve of enzyme functionality
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kinetics of allosteric enzymes
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homeodomain proteins

Ot homeodomain proteins kateubUvouv T0 CXNUATIOUO TWV
aOVWV Kal TwV SOUWV TOU CWHOTOC KATA TN SLAPKELD TNG
NPWLMNG epuBpuikng avamtuénc. MoAAéc homeodomain
proteins npokaAouv kuttapikn dtadopormnoinon,
EVEPYOTIOLWVTAC TLC AAUCLOWTEC AVTLOPATELC TWV
oLVPUBULLOPEVWY YOVLSLWV TTOU aATOUVTOL YLOL TNV
TIOPAYWYI LELOVWHEVWV LOTWV KOl OPYAVWV

H aAAnAouyia homeobox kwdikormoletl to HD, €vav odalpikod
TOMEQ TtEPLITOU 60 ALVOEEWY TTOU AELTOUPYEL KAVOVIKA WG
TopEac ouvdeonc pe to DNA. Zpepa yvwpiloupe OtL ot
(wa uTtapyxouv ocuvnBwc ntepimou 100 yovidita homeobox

JUVOALKQ, Ttepiitou to 15-30 % OAWV TwV apayovIwy
netaypadnc ota wa eivat mpwteivec HD, oL omoleg
avtutpoowrieVouv mepinou to 0,5-1,25 % OAwv Twv
npwTteivwy oe €va 6edopévo eidoc.
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interactions with other proteins
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Figure 3.35 How Proteins Work (©2012 Garland Science)
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Heterodimerization of leucine zipper proteins
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Figure 3.37 How Proteins Work (92012 Garland Science)



HLH motif
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HLH motif

MyoD

B9 GARLAND PUBLISHING INC.
A memirer of live Tagler & Francs Group

1 GARLAND FUBLISHING INC,
A member af e Tagdar & Francs Greap



HLH motif
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transcription *Myc-Max:
*This heterodimer promotes cell growth, proliferation, and
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expression
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HLH motif
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HLH motif
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Steroid hormone action
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Steroid hormone receptors
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Zinc containing motifs
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Tandem dimer

possibilities for variation in contact

RXR variable

-

(a) DNA s —— repeated DNA sequence

repressor homodimer

(b) DNA ——_—_ palindromic DNA sequence

Figure 3.39 How Proteins Work (©2012 Garland Science)



VDR vitamin D

RXR cis retonic acid
TR thyroid hormone
RAR trans retonic acid

TABLE 3.1 Lipophilichormone

receptor targets

RXR.RXR AGGTCAnAGGTCA
RXR.RAR AGGTCAnnAGGTCA
RXR.VDR AGGTCAnnnAGGTCA
RXR.TR AGGTCAnnnnAGGTCA

RXR.RAR AGGTCAnnnnnAGGTCA

RXR = 9-cis retinoic acid receptor; RAR =
all-trans retinoic acid receptor; VDR = vitamin
D1 receptor; TR = thyroid hormone receptor.
(Based on aTable in F. Rastinejad, Curr. Opin.
Struct. Biol. 11:33-38, 2001. With permission
from Elsevier.)

Figure 3.40 How Proteins Work (©2012 Garland Science) RX R

Table 3.1 How Proteins Work (22012 Garland Science)



Understanding tumorigenic mutations
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Understanding tumorigenic mutations

100 200 300
H,N - s COOH
transactivation DNA-binding oligomerization

e GARLAND PUBLISHING INC.
A meeneber of fhe Taylor & Frams Groug



Understanding tumorigenic mutations

iz 4

BEERERBRERE
e 8
s (% |
Nogy | 230 B
\ J 15 Y
— -";-l
. 264

1 GARLAMD PUBLISHING INC.
A memiber of Lhe Taplor & Framcs Group



Understanding tumorigenic mutations
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|sozymes

Isozymes or Isoenzymes are proteins with different structure which catalyze
the same reaction.

Frequently they are oligomers made with different polypeptide chains, so
they usually differ in regulatory mechanisms and in kinetic characteristics.

From the physiological point of view, isozymes allow the existence of similar
enzymes with different characteristics, “customized” to specific tissue
requirements or metabolic conditions.

The existence of isozymes permits the fine-tuning of metabolism to meet the
needs of a given tissue or developmental stage.



Lactate Dehydrogenase
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. Citric acid cycle, Chapter 17
. Oxidative phosphorylation,
Chapter 18
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. Fatty acid oxidation, Chapter 22
. Amino acid catabolism,
Chapter 23
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Figure 16.34
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© 2015 Macmillan Education
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Figure 3.41 How Proteins Work (©2012 Garland Science)



Lactate Dehydrogenase
pyruvate + NADH = lactate + NAD*

H isozyme by squares
M isozyme by circles
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