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Domains in proteins

TABLE 2.1 Percentage of single and multiple-domain proteins in different genomes

Number of domains in protein

Exactly 1 Exactly 2 =2 Exactly 3 >3 >4
Archaea 36 9 43 2 9 2
Bacteria 35 10 42 2 10 2
Yeast 22 5 57 1 5 3
Metazoa 23 - 52 1 E i

These data are derived from fitting the sequences to domains as defined in SCOP. “Exactly 1" means that the
whole sequence fits precisely to a single domain, whereas “> 2” means that only part of the sequence fits to
a single domain, implying that there must be more than one domain present. Similar arguments apply to
higher numbers. Thus, the percentage in the column“> 3’, for example, is a minimum, because some of the
proteins in the column “= 2" will in fact have three or more domains. (Data from G. Apic, J. Gough and
S.A.Teichman, J. Mol. Biol. 310: 311-325, 2001. With permission from Elsevier.)

Table 2.1 How Proteins Work (©2012 Garland Science)



Functions of Domains

Rossmann

) ains often have clearly identifiable
functions.

malate dehydrogenase

-0 .

H—C—CO0- “G—CoC

H—}F—CDD' © Mahate :eng,.:r_‘j-f:ase . H_Ié_cgg_
H / \ H

! HY O Oxaloacelale

Malate il H i
[tjl/hm: U\_)\”/%Nh2 *

: .
h k
&0

-
HAD HaDH + H




Functions of Domains

— TIM barrel
triosephosphate isomerase
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salt bridge network in 2-deoxyribose-5-phosphate aldolase

Functions of Domains
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Structural A
Inserts

Bacillus subtilis Orotidine 5'-
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0 ]
]i.\'J] Co H HN I
02\\' ‘LL {JA\'\' R
“0,PO 0 { . "(3_:|’U—\II ; ‘g
Orotidin
nonophaosphat
HO OH decarboxylase Hd OH
(O ase)
Uridine 5 -monophosphate 5 Orotidine 5 -monophosphate
{LIMP) (OMP)

Lactococcus lactis dihydroorotate

Mpycobacterium tuberculosis bifunctional histidine/tryptophan
dehydrogenase

biosynthesis isomerase

C

H
c e FMN [
Fogy Ot - Hyo—N—CH,

J; + H—C—H
|—|:]
o frimethy amine dimethylamine formalkde e
0 0 /JL‘NH
HN DHODH _ HN UMPS HO—E—O ‘\NAO /
1 - oy L o —— L ;G: TIM barre
&N o domain
0 0 OH OH

Dihydroorotic acid (DHO) Orotic acid Uridine monophosphate (UMP)

DHODH: dihydroorotate dehydrogenase
UMPS: uridine monophosphate synthase

Rossmann fold

4 TIM barrel domain
domain

Methylophilus methylotrophus trimethylamine dehydrogenase



Evolution,
folding, and design

Current Opinion in Structural Biology
Volume 68, June 2021, Pages 94-104

—(— .

|

|

Domain atrophy as a facilitator of
modular protein evolution in

TIM-barrel fold.
(Prakash and Bateman, 2015)

TIM-barrel fold emerged from half
barrels by duplication and
recombination.

(Lang et al., 2000; Hocker et al., 2004;
Claren et al., 2009)
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-,/“‘\ N TIM-barrel fold promoted the
transition to modern
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~ .vx‘)g,
A protein-mediated metabolism.
. L (Goldman et al., 2016)
Loop mutability and flexibility are
important in TIM-barrel evolvability.
(Newton et al., 2017; Richard, 2019)

Evolution

90's  — 2016

Over decades de novo design of TIM
barrels was attacked and basic
principles were defined.

(Goraj et al., 1990; Tanaka et al., 1994;
Houbrechts et al., 1995;

Offredi et al., 2003; Figueroa et al., 2013;
Nagarajan et al., 2015)

@)
Enzymes designed by recombining
fragments of structurally conserved

TIM barrel active sites.
(Lapidoth et al., 2018)

Successful de novo design of a four-fold
symmetric TIM barrel and insertion

of a secondary structure element.
(Huang et al., 2016; Wiese et al., 2020)

A collection of DeNovoTIMs navigates
a region of the stability landscape

uncharted by natural proteins.
(Romero-Romero et al., 2020)
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TIM-barrel proteins can be built by
recombining fragments from
distantly related folds.

(Bharat et al., 2008; Eisenbelis et al., 2012;
Shanmugaratnam et al., 2012)

N

Alternative splicing results in
multiple lineages of novel
(Ba)s barrels.
(Ochoa-Leyva et al., 2013)

Half-barrel chimeras from
distantly related TIM barrels
can fold and retain function.

~ (Sharma et al., 2016)

Chimeric TIM barrels created
using recurring Ba and af motifs
as a conserved interface.
(Wang et al., 2017)
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‘' Experimental reconstruction
The rate-limiting step in

/
Eact
TIM-barrel folding pathway is

Folding the closing of the B-barrel.
Protein thermal flexibility modulates (Halloran et al., 2019)

kinetic stability of a TIM-barrel protein.
(Quezada et al., 2017 and 2018)
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BapB-secondary motifs as
autonomously folding units

in TIM barrels.
(Kadamuri et al., 2019)

TIM-barrel fitness landscapes
are correlated, influenced by epistasis,

and translocate sequence space.
(Chan et al., 2017 and 2020)

Current Opinion in Structural Biology


https://www.sciencedirect.com/journal/current-opinion-in-structural-biology
https://www.sciencedirect.com/journal/current-opinion-in-structural-biology/vol/68/suppl/C

Functions of Domains
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Functions of Domains

Bacteriophage
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Functions of Domains
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Functions of Domains

Table 8.1 The nucleotide sequences of the three protein-binding regions OR1,
ORZ, and OR3 of the operator of bacterinphage lambda

5 6 7 8 9 10 11 13 14 15 16

5 C C A 3
GR.3,|| “lclalT :
s T CGTGC G 3
S | | | | B R :
5 A CGCAA G 3
GRayIIIITIGCETT C 5

Palindromic base pairs that are most frequent at the two ends are green, and the
pseudo-twofold symmetry axis is indicated by a red dot.

@RI GARLAND PIBLISHING INC,
A meemeber of the Taylor & Francis Graay




Cro and repressor proteins
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Functions of Domains
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The central role played by calmodulin (CaM)
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Action of calmodulin
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S100B protein

EF-Hand Motif
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S100B protein action

“‘x :4- Ca?* + Target
\
f

_,-f/. —L.=| i - Target

Apa-5100 . Ca™-5100 il 1

Apo-51008

p53-Ca’*-51008 'f* 1\“ A

- r | -

Mature Reviews | Cancer



AMP + ATP = 2ADP

Adenylate kinase

three domains:
a central domain flanked by two smaller
nucleotide-binding regions




CHYMOTEYPSIN
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Multidomain proteins are produced by exon
shuffling

exon intron exon intron exon
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Figure 2.14 How Proteins Work (©2012 Garland Science)



A pathway for the

evolution of globin genes
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Figure 2.15 How Proteins Work (©2012 Garland Science)



Complexity

Mycoplasma genitalium, a parasite that lives inside the genitourinary tract.
521 genes

482 are coding regions
Only 382 of these are essential (determined by single-gene knockouts).

Bacterium has about 3000 genes.
A single-celled eukaryote such as yeast has 5000 genes

Humans have approximately 21,000 genes



Cell surface receptors
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Figure 2.11 How Proteins Work (©2012 Garland Science)
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Activation and Intracellular Signaling Mechanisms
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Increase binding specificity sH2 domain

TABLE 2.2 Consensus recognition sequences for SH2 domains

RO positively red

Aol oY M NED PV negatively blue.
Crk pY D/KN HIF/R PVIL phosphotyrosine (phosphorus in orange
Fes pY E X Vi

Fgr pY E/Y/D E/N/D Ay

Fyn pY E/T E/D/Q I/V/IM

Grb2 pY IV N v

Lck pY E/T/Q E/D VM

Nck pY D E P/DIV

Rasa-N pY LV X ]

Rasa-C pY X X P

SH3BP2 pY E/M/V N/V/I X

SHB pY TN/ X L

Src pY E/D/T E/N/Y I/M/L

STAT1 pY D/E P/R R/P/Q

STAT3 pY X X Q

Syk-C pY Q/T/E E/Q L/

Tns pY E N FAN

Vavl pY M/L/E E P

Figure 2.18 How Proteins Work (©2012 Garland Science)

X represents any amino acid and @ any hydrophobic amino acid. (Data from B.A. Liu, K. Jablonowski,
M. Raina, M. Arcé, T. Pawson and PD. Nash, Mol. Cell 22: 851-868, 2006. With permission from Elsevier.)

Table 2.2 How Proteins Work (©2012 Garland Science)



Interaction of two domains

H amoteAeopatiky ouykévtpwon [A/B] slval n ouykévipwon
Tou PN ocuvdedbepévou (eAeBepou) A ou Ba xpelalotav ylo va
ermitevyxBel n bl moootnta cuvdeong pe to B Omwg otnv
nepintwon tng evéopoplakng ovvdeonc A — B.

H [A/B] unopet va ptaost ta 10° M
UTTAPYXEL TepAoTia avénon NG ouyyevelog ouvdeong 6uvo
Hopilwv €av cuvdeBouv peTafl TOuC e TOoV KATAAANAO TPOTIO.

Figure 2.20 How Proteins Work (©2012 Garland Science)



Intramolecular binding

receptor
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KaBwg o TTPOaOETNG YIVETAI JEYAAUTEPOC.
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Figure 2.29 How Proteins Work (©2012 Garland Science)
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Intramolecular domain

autoinhibition
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intramolecular intermolecular
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Figure 2.22 How Proteins Work (©2012 Garland Science)

N (P}Y

the regulation of the calcium-binding protein calmodulin

the inhibition of a tandem PDZ domain in X11/Mnt

the down-regulation of talin, which links the transmembrane integrin cell adhesion molecules to the actin
cytoskeleton Autoinhibition is particularly common in signaling



protein kinase A (PKA)
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Intramolecular domain

= acidic tail

Figure 2.23 How Proteins Work (©2012 Garland Science) I nte ractio nS
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Binding specificity
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Figure 2.26 How Proteins Work (©2012 Garland Science)




Binding specificity
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Binding specificity
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Figure 2.27 How Proteins Work (©2012 Garland Science)



Binding
specificity

Houra Loghmani,Edward M. Conway,
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Control and regulation tb)

Figure 2.32 How Proteins Work (©2012 Garland Science)

active site

Figure 2.31 How Proteins Work (©2012 Garland Science)



Enzyme regulation
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Figure 2.33 How Proteins Work (©2012 Garland Science)



Bacterial two-component signaling system
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Figure 2.34 How Proteins Work (©2012 Garland Science)

Garland Science)

The proteins comprising the bacterial two-component system (TCS) are the sensor histidine kinase and
the response regulator. These two factors are among the most abundant proteins in the sequence

databases, owing to a wide distribution across the bacterial and archaeal kingdom and to significant
amplification within bacterial and archaeal genomes



Bacterial two-component signaling system
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