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ABSTRACT Dissolution of biologically important sparingly soluble salts, such as calcium carbonate and calcium oxalate, is possible
by use of carboxyl- and carboxyl/phosphonate-bearing, anionic additives, citrate, malate, carboxyphosphonate, and butane
tetracarboxylate. Calcium-containing dissolution products have been identified, characterized, and independently synthesized. These
are polymeric materials composed of calcium and the additive as the ligand. Their full characterization was carried out by single-
crystal X-ray crystallography and other techniques.
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CaCO3 is principally found in three morphologiess
calcite (rhombohedral), aragonite (needles), and va-
terite (polycrystalline spheres)sand is one of the

most widespread minerals in nature (1) and industry (2). It
is abundant in geological scales (3) but also in biominerals
(4), mainly as the exoskeleton in shells or cell walls or as
the mechanical support in spicules and spines. The mechan-
ical properties of these structures continue to amaze scien-
tists when compared to synthetically engineered calcium
carbonate (5). These superb mechanical properties stem
from the composite character of CaCO3 biominerals, par-
ticularly the complicated organization of its components,
organic and inorganic (6). The essential, albeit complicated,
role of biopolymers (containing acidic residues, such as
carboxylate or phosphate) in the formation of CaCO3 biom-
inerals is well-established (7). Some of these biopolymers
end up embedded within the CaCO3 matrix, resulting in
bioengineered organic-inorganic composites (8). Deminer-
alization, which could be envisioned as the converse of
biomineralization, is also evident in nature (9) and industry
(10). Demineralization is often used as a laboratory approach
in order to liberate the organic matrix from the mineral
under study. A troublesome issue is the aggressive chemical
reagents used, leading to the harsh destruction of both
mineral and organic phases and to corresponding artifacts.
Thus, valuable information about the true nature of the
biomineral’s organic matrix or skeletal formation is often
lost. The dissolution of CaCO3 has also been studied exten-

sively in the context of a plethora of other processes,
including neutralization of acidic lakes (11), sedimentation
of carbonates in marine environments (12), weathering
processes (13), and acidization of petroleum wells (14) (for
productivity enhancement). It is therefore apparent that
studying CaCO3 dissolution brings about benefits for several
technological and biological disciplines.

In this paper, we report CaCO3 (calcite) dissolution studies
by polycarboxylates (1,2,3,4-butanetetracarboxylic acid,
BTCA), hydroxycarboxylates (D,L-malic acid, MAL; citric acid,
CIT), and carboxyphosphonates (carboxyethylphosphonic
acid, CEPA) and structural characterization of the calcium-
containing products. These products are calcium-additive
coordination polymers that were also independently syn-
thesized and structurally characterized.

The same calcite dissolution protocol was followed for the
“control” (no additives) and in the presence of BTCA, MAL,
CIT, and CEPA (15). Calcite dissolution at pH 5.4 occurs at a
slow rate and at <40% efficiency (Figure 1). The addition
of the aforementioned additives is accompanied by vigorous
effervescence (release of CO2). The presence of the additives
enhances both the dissolution rate and the overall dissolution
efficiency (Figure 1). Points that are at the upper left part of
the graph increase the dissolution efficiency, and those that
are at the lower right enhance the dissolution rate. However,
points located at the upper right enhance both the dissolu-
tion efficiency and rate. In other words, these additives are
both fast and efficient dissolvers of CaCO3.

Apparently, CIT and BTCA are the most efficient CaCO3

dissolvers, followed by MAL, and last by CEPA. The undis-
solved calcite crystals were found to contain no additives (by
Fourier transform infrared spectroscopy FTIR) (16). All
filtrates, after prolonged periods, precipitate solid microc-
rystalline products. These products were studied by FTIR,
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powder X-ray diffraction, and elemental analyses (C, H, and
N) (16). They all contain calcium-coordinated additives,
based on shifted characteristic vibrations of the carboxylate
and/or phosphonate groups. Synthetic efforts (17) to syn-
thesize these materials starting from soluble calcium sources
led to the isolation of crystalline solids that were character-
ized by a variety of methods (16). Three materials were
structurally characterized (18): Ca-CEPA, Ca-MAL, and Sr-
BTCA. We pursued structural characterization of the latter
because all efforts to prepare suitable single crystals of Ca-
BTCA had failed in our hands. The calcium center in Ca-CEPA
is seven-coordinated (monocapped octahedron; Figure 2).
Thus, there are two water molecules, four phosphonate
oxygen atoms, and one carboxylic oxygen atom in the
calcium coordination sphere. These are phosphonate O3 and
O1 atoms, water O6 and O7 atoms, phosphonate O2 and
O1 atoms, and O4 of the carboxylic group.

The octahedron can be visualized having the four oxygen
atoms (O3, O3, O6water, and O7water) as the equatorial ligands
and O4carboxylate occupying one of the two axial positions,
while O2 and O3 (both from the phosphonate group) occupy
the second axial position, forming a four-membered chelate
with Ca2+. The Ca-Owater bond distances are 2.3850(14) and
2.4229(16) Å. The Ca-Ophosphonate bond distances range
from 2.3212(13) to 2.5240(13) Å. The structure of Ca-CEPA
could be described as “ladder-type” architecture. The ladder
is composed of CaO7 polyhedra linked by the carboxylate
moiety. It should be noted that the phosphonate group is
doubly deprotonated, while the carboxylate group remains
protonated (O5) and coordinates to Ca2+ through its carbo-

nyl O4. Although metal-CEPA materials are known (19), this
is the first calcium-containing CEPA coordination polymer.

The calcium center in Ca-MAL is eight-coordinated
(bicapped octahedron), surrounded by two waters, one
hydroxyl oxygen atom, and five carboxyl oxygen atoms
(Figure 3).

The Ca-Owater bond distances are 2.372(10) and 2.475(8)
Å. The Ca-Ocarboxylate bond distances range from 2.338(9)
to 2.585(10) Å. The malate ligand is doubly deprotonated
and chelates four Ca2+ cations. The carboxylate neighboring
the hydroxyl group forms a five-membered chelate with
calcium, whereas the second carboxylate at the opposite end
forms a four-membered chelate with a neighboring Ca2+,
while it bridges (through O4) an adjacent Ca2+. There is one
lattice water in the structure. The structure of Ca-MAL is best
described as a layered motif. Each layer is composed of
edge-sharing Ca2+ dimers (in essence, each layer is com-
posed of two sublayers). These dimers are linked together
via the carboxylate ends. The layers interact via hydrogen
bonds involving the lattice water. Malate salts (organic or
metal-containing) have been reported (20). The structures
of two calcium malate compounds have been reported
(20a, 20b), but our Ca-MAL is distinctly different from these.

In the Sr-BTCA structure, Sr2+ is eight-coordinated
(bicapped octahedron), surrounded by two waters and
six carboxylate oxygen atoms (Figure 4). The Sr-Owater

bond distances are 2.5179(16) and 2.8414(16) Å. The
Sr-Ocarboxylate bond distances range from 2.5641(15) to
2.5855(15) Å. The BTCA ligand is doubly deprotonated and
chelating six Sr2+ cations. It should be noted that the two

FIGURE 1. CaCO3 dissolution in the absence (control) and presence
(CEPA, MAL, CIT, and BTCA) of additives.

FIGURE 2. Structure of the phosphonate-bridged calcium “dimer”
in Ca-CEPA. The coordination of CEPA is also shown.

FIGURE 3. Structure of the carboxylate-bridged calcium “dimer” in
the structure of Ca-MAL. This “dimer” can be envisioned as the
building block for the construction of layers that interact via
hydrogen bonds and run along the a axis.

FIGURE 4. Coordination of BTCA. Each BTCA coordinates to six Sr2+

centers, creating a three-dimensional architecture.
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“central” -COO groups are each singly deprotonated (car-
boxylate groups), while the “end” -COO groups are fully
protonated (carboxylic acid groups). Notably, there are no
chelate rings in the structure.

The carboxylate moieties are coordinated to Sr2+ in a
monodentate fashion, whereas the carboxylic acid groups
bridge two adjacent Sr2+ cations in a η2,µ2 mode. There are
no lattice waters. The structure of Sr-BTCA can be described
as three-dimensional. Structurally characterized M-BTCA
compounds (M ) Na, Mn, Co, Ni, Zn, Cu) are rather rare in
the literature (21).

It is apparent that calcite dissolution rates depend on a
plethora of variables (based on literature reports and our
research). These include (a) the nature and number of groups
on the additive, (b) the pH of dissolution, (c) the additive
concentration, (d) the temperature, etc. On the basis of these
reported results, it appears that the calcite dissolution ef-
ficiency is directly proportional to the number of anionic
coordinating moieties: BTCA (four carboxylates) ≈ CIT (three
carboxylates and one hydroxyl) > MAL (two carboxylates
and one hydroxyl) > CEPA (one carboxylate and one phos-
phonate). It is also interesting to note that the number of
calcium ions per coordinating ligand parallels the dissolution
efficiency of the ligand. CEPA binds three calcium ions, MAL
binds four, whereas CIT coordinates to five calcium ions and
BTCA to six calcium (strontium) centers. It is therefore
reasonable to state that a high number of coordinating
moieties on the dissolver molecule enhances the surface
complexation (a necessary first step in calcite dissolution)
onto Ca2+ sites, with subsequent ligand-induced detachment
of the Ca2+ ion from the calcite crystal surface. A systematic
large-scale structure/function relationship study to relate the
number of calcium-coordinating groups on the additive
backbone and dissolution efficiency is currently lacking.
Further studies along this direction are currently underway
in our laboratories as a follow-up to our recent efforts (22).
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