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Protein NMR Spectroscopy

Determining three-dimensional structures and
monitoring molecular interactions



Outline

* N-dimensional NMR

* Resonance assignment in proteins
 NMR-based structure determination
* Molecular interactions
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Examples of Amino Acids
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Proteins Have Too Many Signals!

'H 1D NMR Spectrum of Ubiquitin

~500 resonances

{

5
H (ppm)

Resolve resonances by multi-dimensional experiments




Protein NMR: Practical Issues

Hardware:
- Magnet: homogeneous, high field - $$$$

e Electronics: stable, tunable

* Environment: temperature, pressure, humidity, stray fields

Sample Preparation:
* Recombinant protein expression (E. coli, Pichia pastoris etc)

*Volume: 300 puL — 600 pL
« Concentration: 1D ~ 50 uM, nD ~ 1mM ie. @ 20 kDa, 1ImM = 10 mg
* Purity: > 95%, buffers

« Sensitivity (y): isotope enrichment (1°N, 13C)



Protein NMR: Practical Issues (cont.)

Solution Conditions:
- Variables: buffer, ionic strength, pH, temperature

* Binding studies: co-factors, ligands

* No crystals!

Molecular Weight:
» up to 30 — 40 kDa for 3D structure determination

« > 100 kDa: uniform deuteration, residue and site-specific, atom-
specific labeling

« Symmetry reduces complexity: 2 x10 kDa = 20 kDa



NMR Spectrum to 3D structure?
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Critical Features of Protein NMR Spectra

- The nuclel are not mutually coupled

Each amino acid gives rise to an
Independent NMR sub-spectrum, which is
much simpler than the complete protein
spectrum

* Regions of the spectrum correspond to different parts
of the amino acid

« Tertiary structure leads to increased dispersion of
resonances
« chemical shifts associated with each nucleus
Influenced by local chemical environment — nearby
nuclel



Solutions to the Challenges

1. Increase dimensionality of spectra to better resolve
signals: 1=2=3=14

2. Detect signals from heteronuclei (13C, 1°N)

» Better resolution of signals/chemical shifts not
correlated nuclel

» More information to identify signals

» Lower sensitivity to MW of protein



1D Protein *H NMR Spectrum
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Resolve Peaks b_y Multi-D NMR

A BONUS—regions in
2D spectra provide
protein fingerprints

If 2D cross peaks
overlap— go to 3D
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Basic Strategy to Assign
Resonances In Protein

1. Assign resonances for each amino acid

TGLS

s| Rl |G

2. Put amino acids in order
- Sequential assignment (R-G-S, T-L-G-S)
- Sequence-specific assignment

1 2 3 4 5 6 7
R-G-S-T-L-G-S



Acronyms for Basic Experiments

Differ Only in the Nature of Mixing

Homonuclear Heteronuclear
Scalar Coupling COSY HSQC
(thru-bond) COrrelation SpectroscopY Heteronuclear
"oy TOCSY Hetero-TOCSY
//°—°§ TOtal Correlation SpectroscopY
Dipolar Coupling
(thru-space) NOESY NOESY-HSQC
oW, Nuclear Overhauser Effect
_ /" \ (Enhancement) SpectroscopY
/C C—
\ /™



Homonuclear *H Assignment Strategy

* For proteins up to ~ 10 kDa

«Scalar couplings to identify resonances/spin
systems/amino acids, dipolar couplings to place In
seguence

» Based on backbone HN (unigue region in *H spectrum,
greatest dispersion of resonances, least overlap)

. Build out from the backbone to identify the
side-chain resonances (unique spin systems)

« 2"d dimension resolves overlap, 3D rare



Homonuclear *H Assignment Strategy

Step 1: Identify Spin System

COSY (3-bond)

TOCSY sch.
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Homonuclear *H Assignment Strategy
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Homonuclear *H Assignment Strategy

Step 1: Identify Spin System

COSY (3-bond)

H,C CH; | Tocsy
\ 7/
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Homonuclear *H Assignment Strategy

Step 2: Fit residues In sequence
Minor Flaw: All NOEs mixed together!

Use only these to make
sequential assignments

\ Long Range

Intraresidue ﬁ

Sequential

ax 4

AHB|H | D s+e+ —Z

e

*Sequential NOEs
= HN-HN (i, i + 1)
= Ho-HN (i, i + 1)

Medium-range
(helices: Ha-HN (i, i + 3,4)))




Homonuclear *H Assignment Strategy

Step 2: Fit residues In sequence

NOESY =

COSY/TOCSY
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Extended Homonuclear *H Strategy

* For proteins up to ~ 15 kDa

*Same basic idea as H strategy: based on
backbone HN

. When backbone 1H overlaps =
disperse with backbone 1°N

» Use heteronuclear 3D experiments to increase
signal resolution

I1H «»1H «—=15N



Solutions to the Challenges

1. Increase dimensionally of spectra to better resolve
signhals: 1=2=3=14

2. Detect signals from heteronuclei (13C, 1°N)

> Labeling with NMR-observable 13C, 1°N isotopes

» Better resolution of signals/chemical shifts not
correlated nuclel

» More information to identify signals

» Lower sensitivity to MW of protein



Isotopic Labeling

« Require uniform >N/13C labeling ie. Every carbon and
nitrogen isotopically labeled

« Grow bacteria on minimal media (salts) supplemented with
15N-NH,CI and 13C-glucose as soles sources of nitrogen and
carbon

* lower yields than protein expression than on enriched media,
therefore need very good recombinant expression system



Double Resonance Experiments

Increases Resolution/Information Content
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Heteronuclear NMR: °N-Edited Experiments

Increases Resolution/Information Content
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3D Heteronuclear NMR: 1°N-Edited Experiments
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Extended Homonuclear *H Strategy

1H-H 2D spectrum

3 overlapped NH resonances
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Summary of Homonuclear Assignment Strategy

» for proteins up to ~10 kDa (2D homonuclear)
and proteins up to ~ 15 kDa (**N-labeling and
3D)

* using scalar coupling-type experiments (COSY,
TOCSY) assign spin systems/side-chain
resonances

« Connect amino acids (identified based on spin
systems) sequentially using NOE-type
experiments and characteristic sequential NOEs
(HN-HN (i, i+1); Ho-HN (i, i+1))



Heteronuclear (1H, 13C, 1°N) Strategy

* for larger proteins (backbone assignment: ~70 kDa; full
structure determination: ~40 kDa)

*Assign resonances (chemical shifts) for all atoms
(except O)

*Handles overlap in backbone H region
disperse with backbone

 Heteronuclear 3D/4D increases resolution

IH == 13C == 1H <+—» 15N\

« Works on bigger proteins because scalar couplings are
larger



Heteronuclear (1H, 13C, 1°N) Strategy

Step 1: Sequence-specific backbone assignment

Assign backbone 'H, 1°N, C«, CP resonances/chemical
shifts and sequentially link amino acids using partner
scalar coupling experiments

Step 2: Side-chain assignment

Assign side-chain 13C & 1H resonances/chemical shifts
using TOCSY-type 3D scalar coupling experiments

** Have complete list of chemical shifts for all 13C,
N, 'H atoms in protein **



Heteronuclear (1H, 13C, 1°N) Assignments

Backbone Experiments

HNCA / HN(CO)CA
Names of scalar
experiments based E HN(CA)CO/HNCO
on atoms detected
HNCACB / HN(CO)CACB

Consecutive residues!!
NOESY not needed

H@®H H
H O




Heteronuclear (1H, 13C, 1°N) Assignments

Backbone Experiments

CBCA(CO)NH HNCACB
inter-residue connectivity - intra-residue connectivity
(HN to previous Ca, CpB) (HN to own Ca, CB)

Search 1°N planes for 13Ca

and 3CB chemical shifts

13CB chemical shift
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N{C-cHNdciciNfC4C

1 Ik L1l
| —H— | XA 111l
H H O |H H\S H|H O
13Ca chemical shi\

common N and HN chemical shift
in both experiments
(found on same N plane)




Heteronuclear (1H, 13C, 1°N) Assignments

Backbone Experiments

CBCA(CO)NH
- Inter-residue connectivity
(HN to previous Ca, Cp)

HNCACB
- Intra-residue connectivity

and possibly inter-residue
(HN to own Ca, CPB)

Start with unique residue

1. Gly —only Ca

2. Ala —upfield-shifted CB (~18
ppm)

3. Thr/Ser — downfield-shifted
Ca & CB which are close to
each other
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Heteronuclear (1H, 13C, 1°N) Assignments

Side-chain Experiments

I
H-C-H HC- HC'-

I
O""
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‘@) .N'@ G-~ @@’N G-G—N-~
5o®O O H oW
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HCCH-COSY /
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Multiple redundancies increase reliability



Heteronuclear (1H, 13C, °N) Assignments

* Enables the study/assignment of much larger proteins (up
to ~100 kDa)

«Scalar coupling-type 3-dimensional experiments only

Bonus: Amino acid identification and sequence-specific
assignment all at once

* Most efficient but experiments are more complex

*Requires 13C, N enrichment (also ?H)
—=High expression levels on minimal media
= Increased cost ($150/g 3C-gluocose; $30/g 1>NH,CI)



Structure Determination Overview

Sample Preparation

List of chemical
shifts for all
nuclei in protein
(1H’ 13C, 15N)

Spectroscopy

Resonance Assignments

Secondary ' Conformational J—

Structure Constraints

Global Fold

refinement

Structure
Calculations

Final
Ensemble




NMR Experimental Observables
Provide Structural Information

1. Backbone conformation from chemical shifts (Chemical
Shift Index — CSI; H%, C«, CB, C’)

2. Hydrogen bond constraints

3. Backbone and side chain dihedral angle constraints
from scalar couplings

4. Distant constraints from NOE connectivities



1. Chemical Shift Index

« Comparison of H*, C*, CP, C’ determined chemical shifts
from protein to standard random coil chemical shift
values

» Upfield-shifted H* and CP and downfield-shifted C* and
C’ values indicate amino acid residues in an a-helical
conformation (requires three consecutive residues
displaying this pattern)

» Downfield-shifted H* and CP and upfield-shifted C* and
C’ values indicate residues in an extended (p-strand)
conformation



2. Hydrogen Bonds

 Slow rate of exchange
of labile HN with solvent
*Protein dissolved in
’H,0; HN signals
disappear with time

*HN groups that are H-
bonded (i.e. part of
secondary structure)
will exchange a lot
slower than those in
loops
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3. Dihedral Angles from Scalar Couplings

-180 -120 -60 0 60 120 180
dihedral angle (¢)

» Must accommodate multiple solutions— multiple J values



4. 1H-1H Distances from NOEs

Intraresidue ﬁ

Challenge is to assign all peaks in NOESY spectra
- semi-automated processes for NOE assignment using
NOESY data and table of chemical shifts yet still

Sequential

ax 4%

Long-range

(tertiary structure)

A

B

S

Medium-range
(helices)

significant amount of human analysis




Protein Fold without Full Structure Calculations

45 HELIXI 586 62 HELIXIV 74

1. Determine secondary structure
*CSlI directly from assignments
Medium-range NOEs

2. Add key long-range NOEs to fold




Approaches to Identifying NOEs

* 1H-1H NOESY 2D

2D IH < 'H

« I5N- or 13C dispersed 1H-1H NOESY

3D H e+« "H <«

ol ol
4D 'H < "W H <« 'Y I <—p W

A A



NMR Structure Calculations

Determine all conformations consistent with
experimental data

* Programs that only do conformational search may
lead to bad geometry = use simulations guided by
experimental data

* need a reasonable starting structure

Distance restraints arrived at from NOE signal
Intensities - signal is an average of all conformations



NMR Structure Calculations (cont)

1. NOE signals are time & population-averaged (ie.
measured on entire sample over period of time)

2. Intensity of NOE signal o 1H-1H distance (1/r°)

. NOE distance restraints are given a range of values
strong NOE: 0-2.8 A
medium NOE: 2.8 -3.5 A
weak NOE: 3.5-5.0 A

NMR data not perfect: Noise, incomplete data -2 multiple
solutions (conformational ensemble unlike X-ray
crystallography with one solution)



Variable Resolution of Structures

« Secondary structures well defined, loops variable
* Interiors well defined, surfaces more variable
* Trends the same for backbone and side chains

» More dynamics at loops/surface
» Constraints in all directions in the interior



Assessing the Quality of NMR Structures

 Number of experimental constraints

« RMSD of structural ensemble (subjective!)
 Violation of constraints- number, magnitude

* Molecular energies

« Comparison to known structures: PROCHECK

« Back-calculation of experimental parameters



Summary of Protein NMR
Structure Determination

Sample preparation with possible isotope labeling

v
Data collection (scalar coupling and dipolar coupling expts.
v
Resonance and sequence-specific assignments

\Z

Identification and quantification of NOE peaks and intensities
and conversion to approx. *H-'H distances

\Z

Generation of models consistent with NOE distance
constraints, dihedral angle ranges, H-bond distances

\Z

Model improvement by inclusion of newly identified NOES
using above mentioned models



NMR Structures — Now what?




Monitoring Molecular Interactions

15N-1H HSQC
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Monitoring Molecular Interactions

Titration followed by >N-'H HSQC




Monitoring Molecular Interactions

Transcription factor (CBP) -oncoprotein (E2A) interaction
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Monitoring Molecular Interactions

- Identification of ligand (E2A)-binding site
on the structure of the KIX domain of CBP



Monitoring Molecular Interactions

Chemical Perturbation Mapping Structure



Ligand Binding

NMR timescale—1 sec to 1 x 10° sec
1/k ¢ =1 >>1 sec = slow exchange, superposition of spectra
1/k s =t << 1 x 10°® sec = fast exchange, weighted average

A D B Kdiss = [A]/[B] - koff/kon

Ligand Binding

| P+L=PL Ko, = L
- Another protein [PL]

- Metal ion
- Drug or chemical



Ligand Binding - exchange

\ppmj

112.6

115.6

114.6

TE14

E641, S642, and S670

/.00
'H {ppmi]

7.0

- Fast exchange
(weighted average of free and
bound populations)

1614
- Intermediate-fast exchange




Ligand Binding

Pt =P +PL
L,=L+PL
[Pio: - PL] [Lyo - PL]
So....... Kiiss tot [PL]tOt
Plot [Lio/[Piod vs © ” in NMR spectra

For fast exchange (weak binding):
6obs - 6init — [ PL]
6sat B 6init [Ptot]

Change = shifting of resonances in spectra

For slow exchange (tight binding):
Integral of peaky,s [ PL]

intensity changes in peaks
Integral of peak,, [Pl of free and bound forms

Change =



Monitoring Molecular Interactions

Binding Constants by NMR

1.2

Stronger Weaker

Normalized chemical shift

s 4 s 0 1 2 3 4 s
Molar ratio of d-CTTCA
Fit change in chemical shift to binding equation




NMR and Crystallography

NMR

« Can mimic biological conditions
- pH, temp, salt

* information on dynamics

* monitor conformational change
on ligand binding

e 2° structure derived from limited
experimental data

* need concentrated sample - lots
of protein; aggregation issues

e size limited — ~40kDa for full
structure determination

* more subjective interpretation
of data

* lack of quality factors -
resolution and R-factor

X-ray

* Highly automated with more
objective interpretation of data

» Quality indicators (resolution, R)

» Surface residues and water
molecules well defined

« Huge molecules and assemblies
can be determined

* non-physiological conditions —
crystallization difficult

* need heavy-atom derivatives —
production not always trivial

* snap-shot of protein in time —
less indication of mobility

* flexible proteins difficult to
crystallize



