Bio NMR spectroscopy

A. Spyros aspyros@uoc.gr F-207, Chemistry building

(Adapted from course material by Prof. Steven P. Smith, School of Medicine, Department of Biomedical and Molecular Sciences, Queen's University, Canada.)

Protein NMR Spectroscopy

Determining three-dimensional structures and monitoring molecular interactions

Outline

- N-dimensional NMR
- Resonance assignment in proteins
- NMR-based structure determination
- Molecular interactions

NMR terminology

Scalar and Dipolar Coupling

Coupling of nuclei gives information on structure

Examples of Amino Acids

Proteins Have Too Many Signals!

¹H 1D NMR Spectrum of Ubiquitin

Resolve resonances by multi-dimensional experiments

Protein NMR: Practical Issues

Hardware:

- Magnet: homogeneous, high field \$\$\$\$
- Electronics: stable, tunable
- Environment: temperature, pressure, humidity, stray fields

Sample Preparation:

- Recombinant protein expression (*E. coli*, *Pichia pastoris* etc)
- •Volume: 300 μL 600 μL
- Concentration: 1D ~ 50 μ M, nD ~ 1mM ie. @ 20 kDa, 1mM = 10 mg
- Purity: > 95%, buffers
- Sensitivity (γ): isotope enrichment (¹⁵N, ¹³C)

Protein NMR: Practical Issues (cont.)

Solution Conditions:

- Variables: buffer, ionic strength, pH, temperature
- Binding studies: co-factors, ligands
- No crystals!

Molecular Weight:

- up to 30 40 kDa for 3D structure determination
- > 100 kDa: uniform deuteration, residue and site-specific, atomspecific labeling
- Symmetry reduces complexity: 2 x10 kDa \neq 20 kDa

NMR Spectrum to 3D structure?

Critical Features of Protein NMR Spectra

• The nuclei are not mutually coupled

Each amino acid gives rise to an independent NMR sub-spectrum, which is much simpler than the complete protein spectrum

- Regions of the spectrum correspond to different parts of the amino acid
- Tertiary structure leads to increased dispersion of resonances
 - chemical shifts associated with each nucleus influenced by local chemical environment – nearby nuclei

- 1. Increase dimensionality of spectra to better resolve signals: $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4$
- 2. Detect signals from heteronuclei (¹³C, ¹⁵N)
 - Better resolution of signals/chemical shifts not correlated nuclei
 - More information to identify signals
 - Lower sensitivity to MW of protein

1D Protein ¹H NMR Spectrum

Basic Strategy to Assign Resonances in Protein

1. Assign resonances for each amino acid

- 2. Put amino acids in order
 - Sequential assignment (R-G-S, T-L-G-S)
 - Sequence-specific assignment

Acronyms for Basic Experiments

Differ Only in the Nature of Mixing

Dipolar Coupling

(thru-space)

NOESY

NOESY-HSQC

Nuclear Overhauser Effect

(Enhancement) SpectroscopY

• For proteins up to ~ 10 kDa

•Scalar couplings to identify resonances/spin systems/amino acids, dipolar couplings to place in sequence

• Based on backbone H^N (unique region in ¹H spectrum, greatest dispersion of resonances, least overlap)

• <u>Concept:</u> Build out from the backbone to identify the side-chain resonances (unique spin systems)

• 2nd dimension resolves overlap, 3D rare

Step 1: Identify Spin System

Step 1: Identify Spin System

Step 1: Identify Spin System

Step 2: Fit residues in sequence

Extended Homonuclear ¹H Strategy

• For proteins up to ~ 15 kDa

•Same basic idea as ¹H strategy: based on backbone H^N

- <u>Concept</u>: When backbone ¹H overlaps \Rightarrow disperse with backbone ¹⁵N
- Use heteronuclear 3D experiments to increase signal resolution

$$^{1}H \rightarrow ^{1}H \rightarrow ^{15}N$$

- 1. Increase dimensionally of spectra to better resolve signals: $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4$
- 2. Detect signals from heteronuclei (¹³C, ¹⁵N)
 - Labeling with NMR-observable ¹³C, ¹⁵N isotopes
 - Better resolution of signals/chemical shifts not correlated nuclei
 - More information to identify signals
 - Lower sensitivity to MW of protein

 Require uniform ¹⁵N/¹³C labeling ie. Every carbon and nitrogen isotopically labeled

How?

 Grow bacteria on minimal media (salts) supplemented with ¹⁵N-NH₄Cl and ¹³C-glucose as soles sources of nitrogen and carbon

 lower yields than protein expression than on enriched media, therefore need very good recombinant expression system

Double Resonance Experiments

Increases Resolution/Information Content

Heteronuclear NMR: ¹⁵N-Edited Experiments

Increases Resolution/Information Content

3D Heteronuclear NMR: ¹⁵N-Edited Experiments

Extended Homonuclear ¹**H Strategy**

¹⁵N dispersed ¹H-¹H TOCSY

Summary of Homonuclear Assignment Strategy

- for proteins up to ~10 kDa (2D homonuclear) and proteins up to ~ 15 kDa (¹⁵N-labeling and 3D)
- using scalar coupling-type experiments (COSY, TOCSY) assign spin systems/side-chain resonances
- Connect amino acids (identified based on spin systems) sequentially using NOE-type experiments and characteristic sequential NOEs (H^N-H^N (i, i+1); Hα-H^N (i, i+1))

Heteronuclear (¹H, ¹³C, ¹⁵N) Strategy

 for larger proteins (backbone assignment: ~70 kDa; full structure determination: ~40 kDa)

•Assign resonances (chemical shifts) for all atoms (except O)

 Handles overlap in backbone H^{15N} region disperse with backbone C', C^α, H^α, C^β, H^β

• Heteronuclear 3D/4D increases resolution

¹H \longleftrightarrow ¹³C \longleftrightarrow ¹H \longleftrightarrow ¹⁵N

 Works on bigger proteins because scalar couplings are larger

Heteronuclear (¹H, ¹³C, ¹⁵N) Strategy

Step 1: Sequence-specific backbone assignment

Assign backbone ¹H, ¹⁵N, C^{α}, C^{β} resonances/chemical shifts and sequentially link amino acids using partner scalar coupling experiments

Step 2: Side-chain assignment

Assign side-chain ¹³C & ¹H resonances/chemical shifts using TOCSY-type 3D scalar coupling experiments

** Have complete list of chemical shifts for all ¹³C, ¹⁵N, ¹H atoms in protein **

Backbone Experiments

Backbone Experiments

Backbone Experiments

CBCA(CO)NH

- inter-residue connectivity (HN to previous $C\alpha$, $C\beta$)

HNCACB

 intra-residue connectivity and possibly inter-residue (HN to own Cα, Cβ)

Start with unique residue

- 1. Gly only $C\alpha$
- Ala upfield-shifted Cβ (~18 ppm)
- 3. Thr/Ser downfield-shifted $C\alpha \& C\beta$ which are close to each other

Side-chain Experiments

Multiple redundancies increase reliability

- Enables the study/assignment of much larger proteins (up to ~100 kDa)
- •Scalar coupling-type 3-dimensional experiments only

•<u>Bonus</u>: Amino acid identification and sequence-specific assignment all at once

• Most efficient but experiments are more complex

•Requires ¹³C, ¹⁵N enrichment (also ²H)
 ⇒High expression levels on minimal media
 ⇒ Increased cost (\$150/g ¹³C-gluocose; \$30/g ¹⁵NH₄CI)

Structure Determination Overview

NMR Experimental Observables Provide Structural Information

- Backbone conformation from chemical shifts (Chemical Shift Index – CSI; H^α, C^α, C^β, C')
- 2. Hydrogen bond constraints
- 3. Backbone and side chain dihedral angle constraints from scalar couplings
- 4. Distant constraints from NOE connectivities

1. Chemical Shift Index

• Comparison of H^{α}, C^{α}, C^{β}, C' determined chemical shifts from protein to standard random coil chemical shift values

• Upfield-shifted H^{α} and C^{β} and downfield-shifted C^{α} and C' values indicate amino acid residues in an α -helical conformation (requires three consecutive residues displaying this pattern)

• Downfield-shifted H^{α} and C^{β} and upfield-shifted C^{α} and C' values indicate residues in an extended (β -strand) conformation

2. Hydrogen Bonds

C=O----H-N

 Slow rate of exchange of labile H^N with solvent Protein dissolved in $^{2}H_{2}O; H^{N}$ signals disappear with time •H^N groups that are Hbonded (i.e. part of secondary structure) will exchange a lot slower than those in loops

3. Dihedral Angles from Scalar Couplings

➤ Must accommodate multiple solutions → multiple J values

4. ¹H-¹H Distances from NOEs

Challenge is to assign all peaks in NOESY spectra - semi-automated processes for NOE assignment using NOESY data and table of chemical shifts yet still <u>significant</u> amount of human analysis

Protein Fold without Full Structure Calculations

- Determine secondary structure
 CSI directly from assignments
 - •Medium-range NOEs
- 2. Add key long-range NOEs to fold

Approaches to Identifying NOEs

- ¹H-¹H NOESY 2D ¹H \leftrightarrow ¹H
- ¹⁵N- or ¹³C dispersed ¹H-¹H NOESY

$$\frac{3D}{^{15}N} \stackrel{^{1}H}{\longrightarrow} \stackrel{^{1}H}{\longrightarrow} \stackrel{^{1}H}{\stackrel{^{1}H}{\longrightarrow} \stackrel{^{1}H}{\longrightarrow} \stackrel{^{H$$

 $\underline{4D} \xrightarrow{1}H \longrightarrow 1H \xrightarrow{1}H \xrightarrow{1}H$

Objective: Determine all conformations consistent with experimental data

 Programs that only do conformational search may lead to bad geometry → use simulations guided by experimental data

• need a reasonable starting structure

•Distance restraints arrived at from NOE signal intensities \rightarrow signal is an average of all conformations

NMR Structure Calculations (cont)

- 1. NOE signals are time & population-averaged (ie. measured on entire sample over period of time)
- 2. Intensity of NOE signal \propto ¹H-¹H distance (1/r⁶)
- ... NOE distance restraints are given a range of values strong NOE: 0 - 2.8 Å medium NOE: 2.8 – 3.5 Å weak NOE: 3.5 – 5.0 Å

NMR data not perfect: Noise, incomplete data → multiple solutions (conformational ensemble unlike X-ray crystallography with one solution)

Variable Resolution of Structures

- Secondary structures well defined, loops variable
- Interiors well defined, surfaces more variable
- Trends the same for backbone and side chains
 - More dynamics at loops/surface
 - Constraints in all directions in the interior

Assessing the Quality of NMR Structures

- Number of experimental constraints
- RMSD of structural ensemble (subjective!)
- Violation of constraints- number, magnitude
- Molecular energies
- Comparison to known structures: **PROCHECK**
- Back-calculation of experimental parameters

Summary of Protein NMR Structure Determination

NMR Structures – Now what?

NMR Provides > Site-specific > Multiple probes > In-depth info Ν 1 Spatial 5 distribution of p responses can be m mapped on structure

Titration followed by ¹⁵N-¹H HSQC

Transcription factor (CBP) -oncoprotein (E2A) interaction

Map of chemical shift perturbations on the structure of protein?

- Identification of ligand (E2A)-binding site on the structure of the KIX domain of CBP

Chemical Perturbation Mapping

Structure

Ligand Binding

NMR timescale -1 sec to 1×10^{-6} sec

 $1/k_{off} = t >> 1 \text{ sec} \Rightarrow \text{slow exchange, superposition of spectra}$

 $1/k_{off} = t \ll 1 \ge 10^{-6} \sec \Rightarrow$ fast exchange, weighted average

$$A \xrightarrow{k_{on}} B \qquad K_{diss} = [A]/[B] = k_{off}/k_{on}$$

Ligand Binding

$$P + L = PL$$
 $K_{diss} = \frac{|P||L|}{|PL|}$

- Another protein
- Metal ion
- Drug or chemical

Ligand Binding - exchange

E641, S642, and S670

- Fast exchange (weighted average of free and bound populations)

<u>T614</u>

- Intermediate-fast exchange

Ligand Binding

$$P_{tot} = P + PL$$

$$L_{tot} = L + PL$$
So...... $K_{diss} = \frac{[P_{tot} - PL] [L_{tot} - PL]}{[PL]}$

Plot [L_{tot}]/[P_{tot}] vs "change" in NMR spectra

For fast exchange (weak binding):

Change = $\frac{\delta_{obs} - \delta_{init}}{\delta_{sat} - \delta_{init}} = \frac{[PL]}{[P_{tot}]}$ shifting of resonances in spectra

For slow exchange (tight binding):Change = Integral of peak_{obs}
Integral of peak_{max}[PL]
[P_{tot}]intensity changes in peaks
of free and bound forms

Binding Constants by NMR

Fit change in chemical shift to binding equation

NMR and Crystallography

<u>NMR</u>

- Can mimic biological conditions
- pH, temp, salt
- information on dynamics
- monitor conformational change on ligand binding
- 2° structure derived from limited experimental data
- need concentrated sample lots of protein; aggregation issues
- size limited ~40kDa for full structure determination
- more subjective interpretation of data
- lack of quality factors resolution and *R*-factor

<u>X-ray</u>

- Highly automated with more objective interpretation of data
- Quality indicators (resolution, R)
- Surface residues and water molecules well defined
- Huge molecules and assemblies can be determined
- non-physiological conditions crystallization difficult
- need heavy-atom derivatives production not always trivial
- snap-shot of protein in time less indication of mobility
- flexible proteins difficult to crystallize