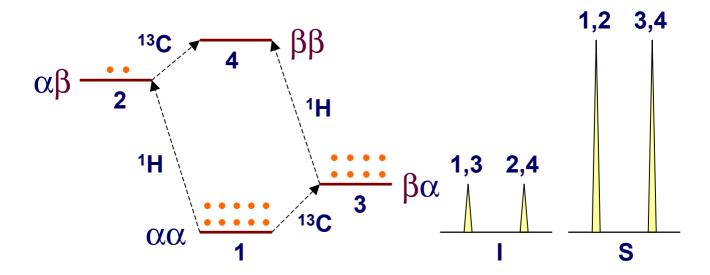
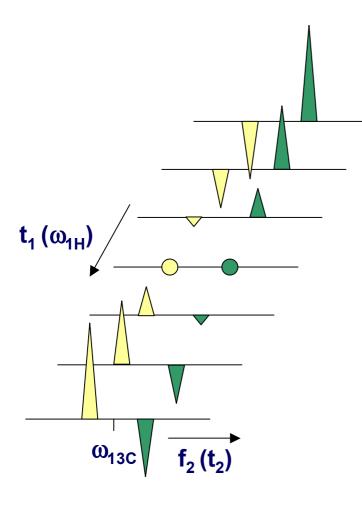

Heteronuclear correlation - HETCOR

- Last time we saw how the second dimension comes to be, and we analyzed how the COSY experiment (homonuclear correlation) works.
- In a similar fashion we can perform a 2D experiment in which we analyze heteronuclear connectivity, that is, which ¹H is connected to which ¹³C. This is called *HETCOR*, for *HETeronuclear CORrelation spectroscopy*.
- The pulse sequence in this case involves both ¹³C and ¹H, because we have to somehow label the intensities of the ¹³C with what we do to the populations of ¹H. The basic sequence is as follows:


HETCOR (continued)

 We first analyze what happens to the ¹H proton (that is, we'll see how the ¹H populations are affected), and then see how the ¹³C signal is affected. For different t₁ values we have:

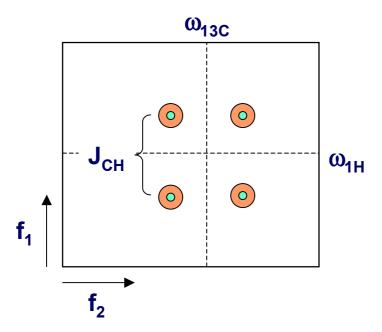
HETCOR (...)


- As was the case for COSY, we see that depending on the t₁ time we use, we have a variation of the population inversion of the proton. We can clearly see that the amount of inversion depends on the J_{CH} coupling.
- Although we did it on-resonance for simplicity, we can easily show that it will also depend on the ${}^{1}H$ frequency (δ).
- From what we know from SPI and INEPT, we can tell that the periodic variation on the ¹H population inversion will have the same periodic effect on the polarization transfer to the ¹³C. In this case, the two-spin energy diagram is ¹H-¹³C:

• Now, since the intensity of the ¹³C signal that we detect on **t**₂ is modulated by the frequency of the proton coupled to it, the ¹³C FID will have information on the ¹³C **and** ¹H frequencies.

HETCOR (...)

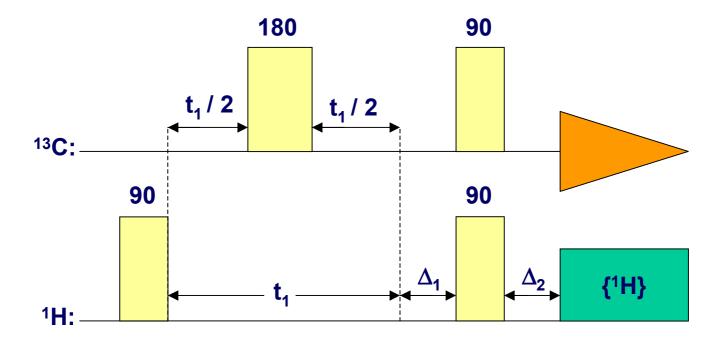
Again, the intensity of the ¹³C lines will depend on the ¹H population inversion, thus on ω_{1H}. If we use a stacked plot for different t₁ times, we get:


The intensity of the two
¹³C lines will vary with
the ω_{1H} and J_{CH} between
+5 and -3 as it did in the
INEPT sequence.

• Mathematically, the intensity of one of the ^{13}C lines from the multiplet will be an equation that depends on ω_{13C} on t_2 and ω_{1H} on t_1 , as well as J_{CH} on both time domains:

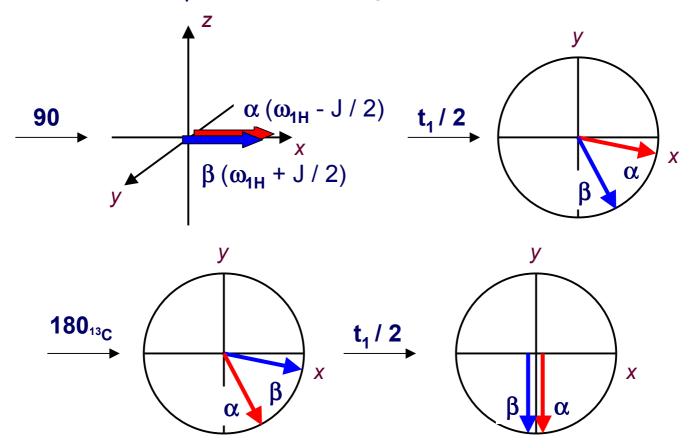
$$\textbf{A}_{13\text{C}}(\textbf{t}_1,\,\textbf{t}_2) \propto \text{trig}(\omega_{1\text{H}}\textbf{t}_1) \,^*\, \text{trig}(\omega_{13\text{C}}\textbf{t}_2) \,^*\, \text{trig}(\textbf{J}_{\text{CH}}\textbf{t}_1) \,^*\, \text{trig}(\textbf{J}_{\text{CH}}\textbf{t}_2)$$

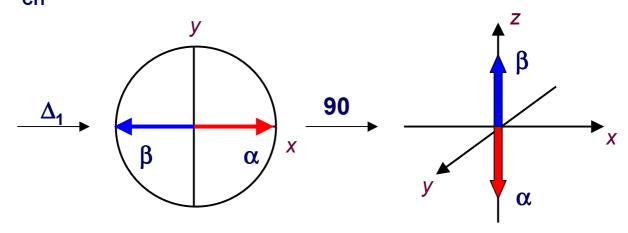
HETCOR (...)


 Again, Fourier transformation on both time domains gives us the 2D correlation spectrum, in this case as a contour plot:

- The main difference in this case is that the 2D spectrum is not symmetrical, because one axis has ¹³C frequencies and the other ¹H frequencies.
- Pretty cool. Now, we still have the J_{CH} coupling splitting all the signals of the 2D spectrum in little squares. The J_{CH} are in the 50 - 250 Hz range, so we can start having overlap of cross-peaks from different CH spin systems.
- We'll see how we can get rid of them without decoupling (if we decouple we won't see ¹H to ¹³C polarization transfer...).

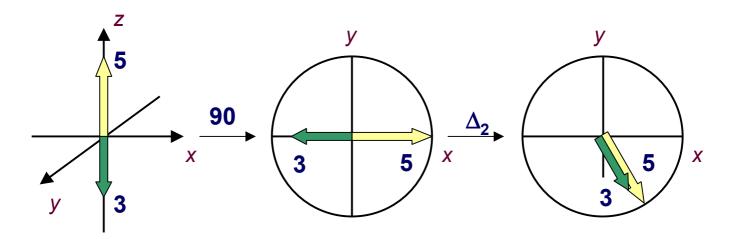
HETCOR with no J_{CH} coupling


 The idea behind it is pretty much the same stuff we did with the refocused INEPT experiment.

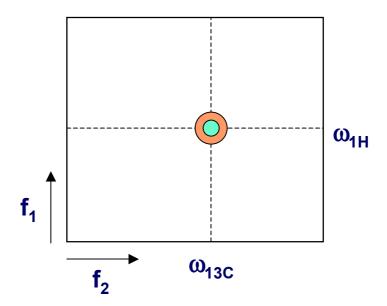

- We use a 13 C π pulse to refocus 1 H magnetization, and two delays to to maximize polarization transfer from 1 H to 13 C and to get refocusing of 13 C vectors before decoupling. As in INEPT, the effectiveness of the transfer will depend on the delay Δ and the carbon type. We use an average value.
- We'll analyze the case of a methine (CH) carbon...

HETCOR with no J_{CH} coupling (continued)

• For a certain t₁ value, the ¹H magnetization behavior is:



• Now, if we set Δ_1 to **1** / **2J** both ¹H vectors will dephase by by exactly 180 degrees in this period. This is when we have maximum population inversion for this particular \mathbf{t}_1 , and no \mathbf{J}_{CH} effects:



HETCOR with no J_{CH} coupling (...)

• Now we look at the 13 C magnetization. After the proton π / 2 we will have the two 13 C vectors separated in a 5/3 ratio on the <z> axis. After the second delay Δ_2 (set to 1 / 2J) they will refocus and come together:

 We can now decouple ¹H because the ¹³C magnetization is refocused. The 2D spectrum now has no J_{CH} couplings (but it still has the chemical shift information), and we just see a single cross-peak where formed by the two chemical shifts:

Summary

- The HETCOR sequence reports on which carbon is attached to what proton and shows them both - Great for natural products stuff.
- The way this is done is by inverting ¹H population and varying the transfer of ¹H polarization to 13C during the variable t1.
- We can obtain a decoupled version by simply lumping in an refocusing echo in the middle.

Next time

- HOMO2DJ spectroscopy.
- Coherence transfer and multiple quantum spectroscopy.

HAVE A COOL (AND SAFE) BREAK!!!

(and work on the take-home...)