Χημικός Δεσμός I

Στόχος μας:
Η περιγραφή και κατανόηση των αλληλεπιδράσεων μεταξύ ατόμων και μορίων

Τί είναι χημικός δεσμός και είδη χημικών δεσμών...
Looking Back at Chemical Bonding

Bonding must be electric in nature.

1852, E. Frankland proposed the valence concept.

1874 J.H. van't Hoff and le Bel postulated the tetrahedral arrangement of 4 bonds around carbon.

1916 G.N. Lewis proposed the dot symbol for valence electrons

1923 G.N. Lewis wrote *Valence and the structure of atoms and molecules*.

1939 L. Pauling wrote *The nature of chemical bond*

1940 N.V. Sidgwick and H.E. Powell studied the lone pairs of valence electrons.
Lewis Theory

G.N. Lewis (1875-1946) recognized that:

- **valence (outmost) electrons** are fundamental to bonding
- **electron transfer** resulting in ionic bonds
- **sharing electrons** resulting in covalent bonds

and

- atoms tend to acquire **noble-gas electronic configurations**
Lewis wrote in a memorandum dated March 28, 1902.
Αναγραφή των τύπων Lewis

Ο τύπος Lewis μοιάζει με τον συντακτικό τύπο μιας και δείχνει πως συνδέονται τα άτομα μεταξύ τους όμως εκτός από τα δεσμικά ηλεκτρόνια, ένας τύπος με ηλεκτρόνια κοινότητας δείχνει τις θέσεις των μονήρων ζευγών ηλεκτρόνιων, κάτι που δεν δείχνει ο συντακτικός τύπος.

Ετσι η αναγραφή Lewis αποτελεί μια απλή διαδιάσταση παράσταση των θέσεων των ηλεκτρόνιων σε ένα μόριο.
Κατανομή εξωτερικών ηλεκτρονίων: ΔΕΝ την ξεχνάμε ΠΟΤΕ !!!
Θυμόμαστε ΠΑΝΤΑ πόσα μονήρη e- και πόσα ζεύγη e- έχουν τα άτομα στην εξωτερική τους στοιβάδα...

<table>
<thead>
<tr>
<th>Περίοδος</th>
<th>1A ns₁</th>
<th>2A ns²</th>
<th>3A ns²np₁</th>
<th>4A ns²np²</th>
<th>5A ns²np³</th>
<th>6A ns²np⁴</th>
<th>7A ns²np⁵</th>
<th>8A ns²np⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεύτερη</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td>Τρίτη</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
</tbody>
</table>
Δομές Lewis

NF₃

Δομή Lewis

Αθροισμα ε- σθένους

N s²p³ = 5e⁻
3 x F(s²p⁵) = 21e⁻

Σύνολο 26e⁻
Types of Bonds

Electronegativity Difference

<table>
<thead>
<tr>
<th>Type</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionic</td>
<td>>1.7</td>
</tr>
<tr>
<td>Polar Covalent</td>
<td>0.21 – 1.69</td>
</tr>
<tr>
<td>Covalent</td>
<td><0.2</td>
</tr>
</tbody>
</table>
Types of Bonds

<table>
<thead>
<tr>
<th>Covalent (Ομοιοπολικός)</th>
<th>Polar Covalent (Πολωμένος Ομοιοπολικός)</th>
<th>Ionic (Ιοντικός)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 0.2)</td>
<td>0.2 to 1.7</td>
<td>(\geq 1.7)</td>
</tr>
<tr>
<td>Perfect Sharing</td>
<td>Unequal Sharing</td>
<td>Stealing</td>
</tr>
<tr>
<td>Cl₂</td>
<td>HCl</td>
<td>NaCl</td>
</tr>
</tbody>
</table>
Ιοντικός Δεσμός

Εξ ορισμού, ο ιοντικός δεσμός είναι ο χημικός δεσμός που σχηματίζεται από την ηλεκτροστατική έλξη μεταξύ θετικών και αρνητικών ιών.
Ιοντικός Δεσμός

Ta μέταλλα χάνουν ηλεκτρόνια και τα αμέταλλα κερδίζουν ηλεκτρόνια

[Diagram showing the periodic table with emphasis on ionization tendencies of metals and non-metals]
Περιγραφή ιοντικών δεσμών

Πώς δημιουργείται ο ιοντικός δεσμός

\[
\text{Na}([\text{Ne}]3s^1) + \text{Cl}([\text{Ne}]3s^23p^5) \rightarrow \text{Na}^+([\text{Ne}]) + \text{Cl}^-([\text{Ne}]3s^23p^6)
\]

Μοντέλο τμήματος ενός κρυστάλλου, στο οποίο διακρίνεται σαφώς η κανονική διάταξη των ιόντων νατρίου και χλωριδίου.

Κάθε ιόν \(\text{Na}^+ \) περιβάλλεται από έξι ιόντα \(\text{Cl}^- \) και κάθε ιόν \(\text{Cl}^- \) περιβάλλεται από έξι ιόντα \(\text{Na}^+ \)
Ioντικός Δεσμός και Ενέργεια Πλέγματος

Το μέγεθος της ενέργειας πλέγματος εξαρτάται από:

- τα φορτία των ιόντων,
- το μέγεθος τους και
- την τρισδιάστατη διευθέτηση του πλέγματος.

\[E = k \frac{Q_1 Q_2}{d} \]

- \(Q_1 \) = φορτίο του πρώτου σωματιδίου
- \(Q_2 \) = φορτίο του δεύτερου σωματιδίου
- \(d \) = απόσταση μεταξύ των κέντρων των σωματιδίων
- \(k = 8.99 \times 10^9 \, \text{J m/C}^2 \)
Ενέργεια Πλέγματος (U): η ενέργεια που απαιτείται για τον πλήρη διαχωρισμό ενός mole μιας στερεάς ιοντικής ένωσης στα ιόντα της σε αέρια φάση

\[\text{NaCl(s)} \rightarrow \text{Na}^+(g) + \text{Cl}^-(g) \]

\[U = +788 \text{ kJ/mol} \]

\[U > 0 \]
Νόμος του Hess: Η ενθαλπία μιας αντίδρασης είναι η ίδια ανεξάρτητα από το αν η αντίδραση γίνεται σε ένα ή περισσότερα στάδια

Ενθαλπία Εξάχωσης: η ενέργεια που απαιτείται για την μετατροπή 1 mol ατόμων (s) σε 1 mol ατόμων (g). $\text{A(s)} \rightarrow \text{A(g)}$

Ενθαλπία Ιοντισμού: η ενέργεια που απαιτείται για την μετατροπή 1 mol ατόμων (g) σε 1 mol ιόντων$^+$ (g). $\text{A(g)} \rightarrow \text{A}^+(g) + 1 \text{e}^-$

Ηλεκτρονική Συγγένεια: η ενέργεια που απαιτείται για την μετατροπή 1 mol ατόμων (g) σε 1 mol ιόντων$^-$ (g): $\text{A(g)} + 1 \text{e}^- \rightarrow \text{A}^-(g)$

Ενθαλπία Διάστασης: η ενέργεια που απαιτείται για την διάσπαση 1 mol δεσμών (g): $\frac{1}{2} \text{A}_2(g) \rightarrow \text{A(g)}$
Ο κύκλος Born-Haber για το NaCl

Ο σχηματισμός του NaCl(s) από τα στοιχεία του πραγματοποιείται μέσα από δύο διαφορετικές πορείες.

Η άμεση πορεία είναι η αντίδραση σχηματισμού και η μεταβολή ενθαλπίας είναι $ΔH_f$.

Η έμμεση πορεία πραγματοποιείται σε πέντε βήματα:

\[
\begin{align*}
\text{Na}(s) & \quad + \quad 1/2\text{Cl}_2(g) & \quad \xrightarrow{\Delta H_f} & \quad \text{NaCl}(s) \\
\Delta H_1 & \quad \downarrow & \quad \Delta H_2 & \quad \downarrow & \quad \Delta H_3 & \quad \uparrow \\
\text{Na}(g) & \quad \downarrow & \quad \text{Cl}(g) & \quad \xrightarrow{\Delta H_f} & \quad \text{Cl}^-(g) + \text{Na}^+(g) \\
\Delta H_4 & \quad \downarrow & \quad \Delta H_5=-U & \quad \uparrow \\
\end{align*}
\]
Υπολογισμός της ενέργειας πλέγματος από τον κύκλο Born-Haber

Ο σχηματισμός ενός mole NaCl(s) σε ένα στάδιο κατά την αντίδραση Na(s) + 1/2Cl₂(g) → NaCl(s) \(\Delta H_f = -411 \) kJ μπορεί να θεωρηθεί ότι γίνεται κατά τα ακόλουθα βήματα:

1. Εξάχωση: Na(s) → Na(g) \(\Delta H_1 = +108 \) kJ
2. Διάσταση: 1/2Cl₂(g) → Cl(g) \(\Delta H_2 = +244/2 = +122 \) kJ
3. Ιοντισμός: Na(g) → Na⁺(g) + e⁻ \(\Delta H_3 = +496 \) kJ
4. Ηλεκτρονική συγγένεια: Cl(g) + e⁻ → Cl⁻(g) \(\Delta H_4 = -349 \) kJ
5. Na⁺(g) + Cl⁻(g) → NaCl(s) \(\Delta H_5 = -U = \) kJ

Na(s) + 1/2Cl₂(g) → NaCl(s) \(\Delta H_f = -411 \) kJ

Νόμος του Hess \(\Rightarrow \)
\[\Delta H_f = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 \Rightarrow \]
\[\Delta H_5 = \Delta H_f - \Delta H_1 - \Delta H_2 - \Delta H_3 - \Delta H_4 \]
\[= (-411 - 108 - 122 - 496 + 349) \text{ kJ} = -788 \text{ kJ} \]
\(\Rightarrow U = +788 \text{ kJ/mol} \)
Σύνοψη: Ενέργεια Πλέγματος

Ω Συνολικά, υπάρχει μια καθαρή έκλυση ενέργειας.

Ω Η Ενέργεια πλέγματος* είναι μεγάλη αν
 – η ενέργεια ιοντισμού του ενός ατόμου είναι αρκετά μικρή και
 – η ηλεκτρονική συγγένεια του άλλου ατόμου έχει αρκετά μεγάλη αρνητική τιμή.

*Η ενέργεια που απαιτείται για να διαχωρίσουμε πλήρως 1 mol ιονικής ένωσης στα αέρια ιόντα της
Χαρακτηριστικά Ιοντικών Στερεών

Τι φυσικά χαρακτηριστικά παρουσιάζουν τα ιοντικά στερεά;
- Σκληρά
- Εύθραυστα
- Κρυσταλλικά (τακτικές δομές)
- Υψηλό σημείο τήξης
- Διίστανται πλήρως σε υδατικά διαλύματα (υπάρχουν όχι σαν NaCl, αλλά σαν ιόντα Na⁺ και Cl⁻)
Χαρακτηριστικά Ιοντικού δεσμού

Σημαντικά σημεία:
- Ηλεκτροστατική αλληλεπίδραση
- Πλήρης μεταφορά ε με σχηματισμό ιόντων
- Συμβολίζεται με τα σύμβολα Lewis
- Κρυσταλλικές δομές
- Εξηγούνται ορισμένες φυσικές ιδιότητες
Μοριακές ενώσεις – Ομοιοπολικοί δεσμοί

Μοριακές ενώσεις (αποτελούνται από μόρια)

Μόριο: μια ομάδα ατόμων, συνήθως ατόμων αμετάλλων, τα οποία συνδέονται ισχυρά μεταξύ τους μέσω χημικών δεσμών.

Ομοιοπολικός δεσμός: ο χημικός δεσμός που σχηματίζεται με το μοίρασμα ενός ζεύγους ηλεκτρονίων μεταξύ των ατόμων.
Ερώτηση

Πώς σχηματίζεται ο χημικός δεσμός όταν και τα δύο átoma έχουν την τάση να κερδίζουν ηλεκτρόνια;

- Τα átoma μοιράζονται ένα ζεύγος (ή πολλαπλά ζεύγη) ηλεκτρόνιων

- Δεν συμβαίνει μεταφορά ηλεκτρόνιων όπως στον ιοντικό δεσμό
Ομοιοπολικός Δεσμός

Γιατί μοιράζονται τα ηλεκτρόνια τους τα δύο αμέταλλα;

- Επιτρέπει στα άτομα να πετύχουν δομή ευγενούς αερίου.

- Τα δύο αμέταλλα άτομα, με το να μοιράζονται τα ηλεκτρόνια, στην ουσία κερδίζουν ηλεκτρόνια χωρίς να αναγκαστούν να χάσουν ηλεκτρόνια.
Ομοιοπολικός Δεσμός και τύποι Lewis

- Όπως στον ιοντικό δεσμό, έτσι και οι ομοιοπολικοί δεσμοί μπορούν να περιγραφούν με σύμβολα Lewis.

- Χρησιμοποιούνται ζεύγη από τελείες για την αναπαράσταση των ομοιοπολικών δεσμών, καθώς και τελείες για ηλεκτρόνια σε μεμονωμένα áτομα.
Κανόνας της Οκτάδας...

C, N, O, F θέλουν ΠΑΝΤΑ 8 e- γύρω τους...τα υπόλοιπα στοιχεία μπορούν να παρουσιάζουν εξαιρέσεις.

Διπλούς δεσμούς: κυρίως τα C, N, O, S,
Τριπλούς δεσμούς: κυρίως τα C, N
Στον ομοιοπολικό δεσμό 2 ή περισσότερα e- μοιράζονται μεταξύ δύο ατόμων

Lewis structure of F₂

''–'' δηλώνει ΔΥΟ e-
Μονοί Ομοιοπολικοί Δεσμοί.
Κάθε “−” δηλώνει ΔΥΟ e−

Διπλός Ομοιοπολικός Δεσμός: Δύο ότια μοιράζονται ΔΥΟ ΖΕΥΓΑΡΙΑ e−

Τριπλός Ομοιοπολικός Δεσμός: Δύο ότια μοιράζονται ΤΡΙΑ ΖΕΥΓΑΡΙΑ e−
Εφαρμογή του κανόνα της οκτάδας
Ποια από τις παρακάτω δομές Lewis του ιόντος νιτροσυλίου, NO⁺, είναι η σωστή?

\[
\begin{align*}
\text{(α)} & & \text{(β)} & & \text{(γ)} & & \text{(δ)} \\
\colon\text{N} \equiv \colon\text{O} & & \colon\text{N} \equiv \colon\text{O} & & \colon\text{N} \equiv \colon\text{O} & & \colon\text{N} \equiv \colon\text{O} \\
\end{align*}
\]
Ομοιοπολικός Δεσμός

Τι συμβαίνει όταν το ένα από τα άτομα έχει μεγαλύτερη ηλεκτραρνητικότητα από το άλλο;
Πολωμένος Ομοιοπολικός Δεσμός: Ομοιοπολικός δεσμός όπου τα δεσμικά e- είναι πιο κοντά στο ένα άτομο του δεσμού από ότι στο άλλο.

Η διάγραμμα δείχνει τις διαφορές στη διάταξη των ηλεκτρονικών, με τη δεξιά πλευρά να είναι περισσότερα e- από την άλλη. Από αυτό είδος δεσμοί καλούνται Πολωμένοι Ομοιοπολικοί Δεσμοί.

- H : H: Μη πολωμένος ομοιοπολικός δεσμός
- H : Cl+: Πολωμένος ομοιοπολικός δεσμός
- Na+: Cl-: Ιοντικός δεσμός
Μήκη Ομοιοπολικών Δεσμών

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Bond Length (pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C</td>
<td>154</td>
</tr>
<tr>
<td>C=O</td>
<td>133</td>
</tr>
<tr>
<td>C≡O</td>
<td>120</td>
</tr>
<tr>
<td>C-N</td>
<td>143</td>
</tr>
<tr>
<td>C≡N</td>
<td>128</td>
</tr>
<tr>
<td>C≡N</td>
<td>116</td>
</tr>
</tbody>
</table>

Τριπλός < Διπλός < Μονός δεσμός
Ηλεκτραρνητικότητα: η ικανότητα ενός στοιχείου να έλκει τα δεσμικά e-

Linus Pauling, 1901-1994
Nobel Prize in Chemistry (1954)
Nobel Peace Prize (1962)

Cs: το λιγότερο ηλεκτραρνητικό άτομο

F: το πιο ηλεκτραρνητικό άτομο

Όσο μεγαλύτερη η διαφορά ηλεκτρ/τας μεταξύ 2 στοιχείων, τόσο πιο πολωμένος ο μεταξύ τους δεσμός
Comparison of Ionic and Covalent Compounds

<table>
<thead>
<tr>
<th>Property</th>
<th>NaCl</th>
<th>CCl₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>White solid</td>
<td>Colorless liquid</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>801</td>
<td>−23</td>
</tr>
<tr>
<td>Molar heat of fusion* (kJ/mol)</td>
<td>30.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Boiling point (°C)</td>
<td>1413</td>
<td>76.5</td>
</tr>
<tr>
<td>Molar heat of vaporization* (kJ/mol)</td>
<td>600</td>
<td>30</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>2.17</td>
<td>1.59</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>High</td>
<td>Very low</td>
</tr>
</tbody>
</table>

Electrical conductivity

<table>
<thead>
<tr>
<th></th>
<th>Solid</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>CCl₄</td>
<td>Poor</td>
<td>Poor</td>
</tr>
</tbody>
</table>

* Molar heat of fusion and molar heat of vaporization are the amounts of heat needed to melt 1 mole of the solid and to vaporize 1 mole of the liquid, respectively.
Πως γράφουμε τις δομές Lewis

1) Υπολογίζουμε τα συνολικά e- σθένους
2) Γράφουμε τη δομή του μορίου (εάν δεν τη γωρίζουμε) με το λιγότερο ηλεκτραρνητικό άτομο ως κεντρικό
3) Βάζουμε τα e- στα περιφερειακά άτομα (ακολουθώντας τον κανόνα της 8άδας)
4) Αν περισσέψουν e- τα τοποθετούμε ως ζεύγη στο κεντρικό άτομο
ΜΗΝ ξεχνάτε ότι κάθε - σημαίνει 2 e⁻

Συνολικός αριθμός e- σθένους = 5 + 3x7 = 26

Κεντρικό άτομο: P (λιγότερο ηλεκτραρνητικό)

Συμπληρώνουμε με ζεύγη e- τα περιφερειακά άτομα (8αδα)

Βάζουμε τα 2 e- που περισσεύουν στον P ως ζεύγος
Δομές Lewis

Hydroxylamine (H₃NO)

H – N – O – H

H | H
HNO₂, νιτρώδες οξύ

Δεν έχει 8 e- γύρω του!!!

Πως υπολογίζουμε το τυπικό φορτίο ενός ατόμου σε ένα μόριο;

"Καταδικά του"
Εξαιρέσεις του κανόνα της οκτάδας

- Μόρια με περιττό αριθμό ηλεκτρονίων, πχ ΝΟ
- Μόρια με άτομο που έχει λιγότερα από 8 ηλεκτρόνια
- Μόρια με άτομο που έχει περισσότερα από 8 ηλεκτρόνια σθένους γύρω του
Draw the Lewis structure for the molecule nitrous oxide (NO)

1. Total electrons: 6+5=11

2. Bonding structure: \[\text{N} \quad \text{O} \]

3. Octet on "outer" element: \[\text{N} \quad \text{O} \cdot \cdot \cdot \]

4. Remainder of electrons (11-8 = 3) on "central" atom: \[\text{N} \quad \text{O} \cdot \cdot \cdot \]

5. There are currently 5 valence electrons around the nitrogen. A double bond would place 7 around the nitrogen, and a triple bond would place 9 around the nitrogen.

We appear unable to get an octet around each atom.
Draw the Lewis structure for boron trifluoride (BF$_3$):
1. Add electrons (3×7) + 3 = 24
2. Draw connectivities:

```
  F
 /|
| B |
|/ |
```

3. Add octets to outer atoms:

```
  F
 /|
| B |
|/ |
```

4. Add extra electrons (24-24=0) to central atom:

```
  F
 /|
| B |
|/ |
```

5. Does central electron have octet? NO. It has 6 electrons
Add a multiple bond (double bond) to see if central atom can achieve an octet:

6. The central Boron now has an octet (there would be three resonance Lewis structures)

- However... In this structure with a double bond the fluorine atom is sharing extra electrons with the boron.

- The fluorine would have a '+' partial charge, and the boron a '-' partial charge, (this is inconsistent with the electronegativities of fluorine and boron).

- BF₃ reacts strongly with compounds which have an unshared pair of electrons which can be used to form a bond with the boron:
Εξαλείψεις του κανόνα της οκτάδας

Μόρια με άτομο που έχει περισσότερα από 8 ηλεκτρόνια

PCl₅

The 'octet' rule is based upon available ns and np orbitals for valence electrons (2 electrons in the s orbitals, and 6 in the p orbitals)

Beginning with the n=3 principle quantum number the d orbitals become available (l=2)

The orbital diagram for the valence shell of phosphorous is:

```
\begin{array}{c|cc}
| & 1 & 1 & 1 \\
\hline
3s & & & \\
3p & & & \\
3d & & & \\
\end{array}
```

Third period elements occasionally exceed the octet rule by using their empty d orbitals to accommodate additional electrons

Expanded valence shells occur most often when the central atom is bonded to small electronegative atoms, such as F, Cl and O.
Draw the Lewis structure for ICl_4^-

1. Count up the valence electrons: $7+(4\times7)+1 = 36$ electrons
2. Draw the connectivities:
 \[
 \begin{array}{c}
 \text{Cl} \\
 \text{Cl} - \text{I} - \text{Cl} \\
 \text{Cl} \\
 \end{array}
 \]

3. Add octet of electrons to outer atoms:

4. Add extra electrons (36-32=4) to central atom:

5. The ICl_4^- ion thus has 12 valence electrons around the central Iodine (in the 5d orbitals)
Συντονισμός ή Μεσομέρεια

Δομή συντονισμού είναι μία ή περισσότερες δομές Lewis για ένα μόριο το οποίο δεν μπορεί να περιγραφθεί ακριβώς με μόνον έναν τρόπο κατά Lewis.

Ανθρακικό ανιόν, CO_3^{2-}
Δομές συντονισμού για το νιτρικό ανιόν, NO$_3^-$
Πιθανές Δομές Lewis για το καρβονυλοξιδίο....ποιά είναι η σωστή?

(α)
(β)
(γ)

Την απάντηση τη δίνει το τυπικό φορτίο:

1) Μικρά τυπικά φορτία
2) Αρνητικά τυπικά φορτία σε ηλεκτραρνητικά άτομα
3) Αποφυγή ομοειδών φορτίων σε γειτονικά άτομα
Πιθανές Δομές Lewis για το θειονυλοχλωρίδιο....ποιά είναι η σωστή?

(α)

(β)

(γ)
Μοριακή Γεωμετρία και Θεωρία του Χημικού Δεσμού
Μοριακή Γεωμετρία και Θεωρία του Χημικού Δεσμού

- VSEPR
- Διπολική ροπή
- Θεωρία Δεσμού Σθένους (Valence Bond Theory)
- Πολλαπλοί Δεσμοί
- Θεωρία Μοριακών Τροχιακών
Από διάφορα πειράματα γνωρίζουμε ότι τα μόρια έχουν καθορισμένες δομές ή αλλοιώσ τα άτομα ενός μορίου κατέχουν συγκεκριμένες θέσεις το ένα σε σχέση με το άλλο στον χώρο.

Μοριακή γεωμετρία είναι το γενικό σχήμα ενός μορίου, όπως αυτό καθορίζεται από τις σχετικές θέσεις των ατομικών πυρήνων.

Το μόριο του διοξειδίου του άνθρακα είναι γραμμικό.

Το μόριο του νερού είναι γωνιακό ή κεκαμένο.
Μοριακή Γεωμετρία

Ερώτηση:

- Όταν σχηματίζονται μόρια, τα άτομα τους προσανατολίζονται προς συγκεκριμένες κατευθύνσεις στο χώρο.

- Γιατί συμβαίνει αυτό;
VSEPR – Το Κλειδί στη Μοριακή Γεωμετρία

- VSEPR (Άπωση ηλεκτρονικών ζευγών της στιβάδας σθένους)
 - Valence
 - Shell
 - Electron
 - Pair
 - Repulsion

- Τι υπονοούν αυτές οι λέξεις;
 - Valence Shell: έχει να κάνει με τα e- σθένους
 - Electron Pair Repulsion: η τάση των e- να απωθούνται μεταξύ τους
Εξ ορισμού, το VSEPR είναι ένα μοντέλο πρόβλεψης της γεωμετρίας μορίων και ιόντων, στο οποίο

- τα ζεύγη των ηλεκτρονίων σθένους είναι διευθετημένα γύρω από το κεντρικό άτομο κατά τέτοιο τρόπο, έτσι ώστε να παραμένουν όσο το δυνατόν πιο μακριά, προκειμένου να ελαχιστοποιούνται οι μεταξύ τους απώσεις.

Κατά τη δημιουργία ενός χημικού δεσμού, ένα τροχιακό σθένους του ατόμου A, αρχίζει και επικαλύπτεται εν μέρει με ένα τροχιακό σθένους του ατόμου B. Τα e- πλέον κινούνται γύρω και από τα δύο άτομα.
Πώς σχηματίζεται ο δεσμός στο H_2 και στο HCl

Ο σχηματισμός του δεσμού H–H στο μόριο H_2 πραγματοποιείται με επικάλυψη των τροχιακών $1s$ των δύο ατόμων H.

Cl: $\text{Ne} \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$

Ο σχηματισμός του δεσμού H–Cl στο μόριο HCl πραγματοποιείται με επικάλυψη του τροχιακού $1s$ του ατόμου H με το τροχιακό $3p$ του ατόμου Cl

Όλα τα τροχιακά, πλην του s, επικαλύπτονται κατά τις κατευθύνσεις που δείχνουν οι λοβοί τους, ώστε να επιτυγχάνεται η μέγιστη επικάλυψη.
Μεταβολή Ενέργειας Δεσμού – Απόσταση Ατόμων
Σύμφωνα με την VB ο αριθμός των δεσμών που επιτρέπεται να κάνει ένα άτομο ισούται με τον αριθμό των ασύζευκτων e- του.

Συνεπώς, το Η μπορεί να κάνει έναν δεσμό, το O δύο, το N τρεις, τα F, Cl, Br, I έναν....και ο C ???

C: 1s² 2s² 2pₓ¹ 2pᵧ¹ Δύο ασύζευκτα e-, συνεπώς ΔΥO δεσμούς

Welcome to Hybridism...
1ο βήμα: ο C "αποκτά" 4 ασύζευκτα e- προωθώντας ένα 2s e- στο κενό 2p_z τροχιακό.

ΔΙΗΓΕΡΜΕΝΗ κατάσταση

Συνεπώς (π.χ. στο CH₄) ο C θα είχε 2 ειδών δεσμούς:

3 δεσμούς από επικάλυψη 2p₈ + 1s₉
1 δεσμό από επικάλυψη 2s₈ + 1s₉
Όμως:

1) Διαφορετική επικάλυψη σημαίνει διαφορετική ενέργεια δεσμών,

2) Τα δύο είδη δεσμών θα είχαν διαφορετικούς προσανατολισμούς:

3 δεσμοί από επικάλυψη \(2p_C + 1s_H\) σε 90° μεταξύ τους

1 δεσμό από επικάλυψη \(2s_C + 1s_H\) σε τυχαίο προσανατολισμό

Πειραματικά όμως έχει βρεθεί ότι:

1) στο \(\text{CH}_4\) υπάρχουν 4 ΙΣΟ∆ΥΝΑΜΟΙ δεσμοί,

2) η γεωμετρία του μορίου είναι ΤΕΤΡΑΕΔΡΙΚΗ (γωνία δεσμών \(\text{H-C-H} = 109.28^\circ\))
Κατά τη διαδικασία του υβριδισμού, σχηματίζονται NEA (υβριδικά) τροχιακά από τον συνδυασμό των τροχιακών των μεμονωμένων ατόμων. Τα νέα αυτά τροχιακά είναι ίσα σε αριθμό με αυτά που συνδυάζονται για τη δημιουργία τους!
ΒΑΣΙΚΑ ΣΗΜΕΙΑ

- Τα εσωτερικά e^- δεν παίρνουν μέρος στον υβριδισμό
- Η ανάμιξη γίνεται ανάμεσα στα τροχιακά του ίδιου ατόμου και όχι μεταξύ των e^-
- Το υβριδισμένο (υβριδικό) τροχιακό έχει ενέργεια ενδιάμεση μεταξύ των ατομικών τροχιακών που συνδυάζονται
- Η χωρητικότητα του κάθε υβριδισμένου (υβριδικού) τροχιακού είναι 2 ηλεκτρόνια
sp^3 Υβριδισμός

Ένα sp^3 τροχιακό

4 ατομικά τροχιακά ...

... σχηματίζουν 4 νέα υβριδισμένα ατομικά τροχιακά.
Hybridize to form four sp^3 hybrid orbitals

Shown together (large lobes only)
Υπάρχουν και άλλοι υβριδισμοί: sp^2 Υβριδισμός
- sp
- sp^3d
- sp^3d^2
<table>
<thead>
<tr>
<th>Υβριδικά τροχιακά</th>
<th>Προσανατολισμός τροχιακών</th>
<th>Αριθμός τροχιακών</th>
<th>Παράδειγμα</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp</td>
<td>Γραμμικός</td>
<td>2</td>
<td>Be στο BeF$_2$</td>
</tr>
<tr>
<td>sp^2</td>
<td>Επίπεδος τριγωνικός</td>
<td>3</td>
<td>B στο BF$_3$</td>
</tr>
<tr>
<td>sp^3</td>
<td>Τετραεδρικός</td>
<td>4</td>
<td>C στο CH$_4$</td>
</tr>
<tr>
<td>sp^3d</td>
<td>Τριγωνικός διπυραμιδικός</td>
<td>5</td>
<td>P στο PF$_5$</td>
</tr>
<tr>
<td>sp^3d^2</td>
<td>Οκταεδρικός</td>
<td>6</td>
<td>S στο SF$_6$</td>
</tr>
</tbody>
</table>

Τύπος υβριδικών τροχ. [Diagram] Γεωμετρία
Για να περιγράψουμε το χημικό δεσμό ακολουθούμε τα παρακάτω βήματα:

- Γράφουμε τον τύπο κατά Lewis
- Προσδιορίζουμε τη μοριακή γεωμετρία με το μοντέλο VSEPR
- Από αυτήν προσδιορίζουμε τον υβριδισμό του κεντρικού ατόμου
- Τοποθετούμε στα υβριδικά τροχιακά τα e- σθένους του ατόμου
- Σχηματίζουμε δεσμούς επικαλύπτοντας τα υβριδικά τροχιακά με τροχιακά των άλλων ατόμων
Δομή Lewis: Τετραεδρική διευθέτηση

Υβριδισμός ατομικών τροχιακών του Ο στο H₂O:

- 2s
- 2p
- sp³

Ατόμο Ο (βασική κατάσταση)
Ατόμο Ο (υβριδισμένη κατάσταση)
Ατόμο Ο (στο H₂O)

lone pairs
O-H bonds
Υβριδισμός sp^3d, PF_5
Τα 3s και 3p ηλεκτρόνια προωθούνται στην 3d υποστοιβάδα. Τελικά δημιουργούνται 6 sp³d² υβριδικά τροχιακά.

SF₆
Το Xe έχει 4 απλούς δεσμούς και 2 ζεύγη ηλεκτρονίων. Άρα απαιτούνται 6 τροχιακά...sp³d²

Δομή Lewis

Ατομο Xe (βασική κατάσταση)

Ατομο Xe (υβριδισμένη κατάσταση)

Άτομο Xe (στο XeF₄)
Δυο βασικοί τύποι δεσμών

Σίγμα (σ) δεσμός: είναι ένας δεσμός ο οποίος κατευθύνεται κατά μήκος του άξονα μεταξύ των πυρήνων των ατόμων

- Η ηλεκτρονική πυκνότητα έχει κυλινδρικό σχήμα κατά μήκος του άξονα του δεσμού

Σίγμα δεσμοί μπορούν να σχηματιστούν από την γραμμική αλληλοεπικάλυψη δύο τροχιακών
Στον π-δεσμό η ηλεκτρονική πυκνότητα ευρίσκεται επάνω και κάτω από τον άξονα του δεσμού.

Είναι σημαντικό να γνωρίζουμε ότι:

- Πριν από το σχηματισμό του π-δεσμού, προηγείται ο σχηματισμός ενός σ-δεσμού.
Αιθυλένιο

- Οι γωνίες δεσμών είναι ≈ επίπεδοι τριγωνικοί.
- Με sp² υβριδισμό και 1 ηλεκτρόνιο στο 2p τροχιακό

![Diagram of乙烯](image)
Ο π-δεσμός έχει δύο λοβούς (πάνω και κάτω από το επίπεδο) με πλευρική αλληλεπικάλυψη των 2p 2p.

\[\pi: \text{C}(2p) \rightarrow \text{C}(2p) \]

\[\sigma: \text{H}(1s) \rightarrow \text{C}(sp^2) \]

\[\sigma: \text{C}(sp^2) \rightarrow \text{C}(sp^2) \]
Ο π-δεσμός έχει δύο λοβούς (πάνω και κάτω από το επίπεδο) με πλευρική αλληλεπικάλυψη των 2p–2p.
Η—C ≡ C—Η

Ακετυλένιο

• Γραμμικό μόριο με sp υβριδισμό
Οι δύο π-δασμοί
(αλληλεπίκαλυψη 2p–2p)

\[
\begin{align*}
\sigma: & \text{C(sp)} \rightarrow \text{C(sp)} \\
\pi: & \text{C(2p)} \rightarrow \text{C(2p)} \\
\sigma: & \text{H(1s)} \rightarrow \text{C(sp)} \\
\pi: & \text{C(2p)} \rightarrow \text{C(2p)}
\end{align*}
\]
VSEPR — Πρόβλεψη Γεωμετρίας

- Με τρία βασικά βήματα:
 - Σχεδιάζουμε τον τύπο Lewis
 - Εξετάζουμε το κεντρικό άτομο και καθορίζουμε πως διευθετούνται τα e- ζεύγη έτσι ώστε να ελαχιστοποιηθούν οι μεταξύ τους απώσεις
 - Οι διπλοί ή τριπλοί δεσμοί μετρούν σαν απλοί δεσμοί.
 - Εξετάζουμε τα δεσμικά και τα μη δεσμικά ζεύγη e- και λαμβάνουμε υπ’ όψη ότι οι απώσεις μεταξύ των μη δεσμικών e- είναι μεγαλύτερες σε σχέση με τα δεσμικά ζεύγη και αποφασίζουμε για τις γωνίες των δεσμών.
Οι αποκλίσεις των γωνιών δεσμών από τις ιδανικές τιμές είναι συχνά προβλέψιμες.

- Ένα μονήρες ζεύγος ηλεκτρονίων απαιτεί περισσότερο χώρο από ένα δεσμικό ζεύγος (το μονήρες έλκεται από ένα πυρήνα, ενώ το δεσμικό ζεύγος από δύο).

- Οι πολλαπλοί δεσμοί διεκδικούν περισσότερο χώρο από ό,τι οι απλοί δεσμοί λόγω του μεγαλύτερου αριθμού ηλεκτρονίων.
VSEPR - Γωνίες δεσμών και η επίδραση των μονήρων ηλεκτρονίων

Θεωρείτε τις γωνίες δεσμών των: CH₄, NH₃ και H₂O.

Διαγράμματα και κλήρωση:

- CH₄: Μορφή τετραμερικής σταθερής με γωνία 109.5°
- NH₃: Μορφή τριμερικής σταθερής με γωνία 107.3°
- H₂O: Μορφή διμερικής σταθερής με γωνία 104.5°

Απόψεις:
- Δεσμικών ζευγών e- με δεσμικά ζεύγη
- Μη δεσμικών ζευγών e- με δεσμικά ζεύγη

Απόψεις:
- Δεσμικών ζευγών e- με δεσμικά ζεύγη
- Μη δεσμικών ζευγών e- με δεσμικά ζεύγη
VSEPR - Κεντρικό άτομο με 2, 3 ή 4 ηλεκτρονικά ζεύγη

<table>
<thead>
<tr>
<th>ΗΛΕΚΤΡΟΝΙΚΑ ΖΕΥΓΗ</th>
<th>ΔΙΕΥΘΕΤΗΣΗ ΖΕΥΓΩΝ</th>
<th>ΜΟΡΙΑΚΗ ΓΕΩΜΕΤΡΙΑ</th>
<th>ΠΑΡΑδΕΙΓΜΑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Συνολικά</td>
<td>Δεσμικά</td>
<td>Μονήρη</td>
<td>Επάνω</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>Γραμμική</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>Επάνω</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>Τετραεδρική</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>Τριγωνική</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΗΛΕΚΤΡΟΝΙΚΑ ΖΕΥΓΙ</td>
<td>ΔΕΥΘΕΙΣΗ ΖΕΥΓΩΝ</td>
<td>ΜΟΡΙΑΚΗ ΓΕΩΜΕΤΡΙΑ</td>
<td>ΠΑΡΑΔΕΙΓΜΑ</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Συνολικά</td>
<td>Δεσμικά</td>
<td>Μονήρη</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Τριγωνική διπεριμετρική</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Μονήρη ζεύγη</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Μονήρες ζεύγη</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Οκταεδρική</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Μονήρης ζεύγη</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Μονήρες ζεύγη</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Ακοντικό άτομο: PCl₃
- Ακοντικό άτομο: SF₆
- Ακοντικό άτομο: ClF₃
- Ακοντικό άτομο: XeF₄
Μοντέλο VSEPR
Valence Shell Electron Pair Repulsion

Πρόβλεψη μοριακής γεωμετρίας από τις ηλεκτροστατικές απώσεις μεταξύ ηλεκτρονικών ζευγών (δεσμικών και μονήρων).

<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>Δεσμικά ηλεκτρονικά ζεύγη</th>
<th>Μονήρη ηλεκτρονικά ζεύγη</th>
<th>Διευθέτηση ζευγών</th>
<th>Μοριακή Γεωμετρία</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB₂</td>
<td>2</td>
<td>0</td>
<td>180°</td>
<td>180°</td>
</tr>
</tbody>
</table>

![Diagram](image)
Μοντέλο VSEPR
Valence Shell Electron Pair Repulsion
Beryllium Chloride

0 μονήρη ζεύγη στο κεντρικό áτομο
↓
Cl—Be—Cl
<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>δεσμικά ηλεκτρονικά ζεύγη</th>
<th>μονήρη ηλεκτρονικά ζεύγη</th>
<th>Διευθέτηση ζευγών</th>
<th>Μοριακή Γεωμετρία</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB₂</td>
<td>2</td>
<td>0</td>
<td>Γραμμική</td>
<td>Γραμμική</td>
</tr>
<tr>
<td>AB₃</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Μοντέλο VSEPR

Valence Shell Electron Pair Repulsion
Boron Trifluoride

Грαμμικό
<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>δεσμικά ηλεκτρονικά ζεύγη</th>
<th>μονήρη ηλεκτρονικά ζεύγη</th>
<th>Διευθέτηση ζευγών</th>
<th>Μοριακή Γεωμετρία</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_2</td>
<td>2</td>
<td>0</td>
<td>Γραμμική</td>
<td>Γραμμική</td>
</tr>
<tr>
<td>AB_3</td>
<td>3</td>
<td>0</td>
<td>Επίπεδη τριγωνική</td>
<td>Επίπεδη τριγωνική</td>
</tr>
<tr>
<td>AB_4</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image.png)
Τετραεδρική

Μεθάνιο

109.5°
<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>Valence Shell Electron Pair Repulsion</th>
<th>Γεωμετρία</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΑΒ₂</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ΑΒ₃</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ΑΒ₄</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>ΑΒ₅</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Phosphorus Pentachloride

Τριγωνική διπυραμιδική
<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>δεσμικά ηλεκτρονικά ζεύγη</th>
<th>μονήρη ηλεκτρονικά ζεύγη</th>
<th>Διευθέτηση ζευγών</th>
<th>Μοριακή Γεωμετρία</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB₂</td>
<td>2</td>
<td>0</td>
<td>Γραμμική</td>
<td>Γραμμική</td>
</tr>
<tr>
<td>AB₃</td>
<td>3</td>
<td>0</td>
<td>Επίπεδη τριγωνική</td>
<td>Επίπεδη τριγωνική</td>
</tr>
<tr>
<td>AB₄</td>
<td>4</td>
<td>0</td>
<td>Τετραεδρική</td>
<td>Τετραεδρική</td>
</tr>
<tr>
<td>AB₅</td>
<td>5</td>
<td>0</td>
<td>Τριγωνική διπυραμιδική</td>
<td>Τριγωνική διπυραμιδική</td>
</tr>
<tr>
<td>AB₆</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sulfur Hexafluoride

Октаздрическая
Αποτέλεσμα μη δεσμικών (μονήρων) ζευγών ηλεκτρονίων

Áπωση
desmikón zeygón e-
me desmiká zeygh

<

mē desmikón zeygón e-
me desmiká zeygh

Áπωση
mē desmikón zeygón e-
me mē desmiká zeygh
<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>δεσμικά ηλεκτρονικά ζεύγη</th>
<th>μονήρη ηλεκτρονικά ζεύγη</th>
<th>Διευθέτηση ζευγών</th>
<th>Μοριακή Γεωμετρία</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_3</td>
<td>3</td>
<td>0</td>
<td>Επίπεδη τριγωνική</td>
<td>Επίπεδη τριγωνική</td>
</tr>
<tr>
<td>AB_2E</td>
<td>2</td>
<td>1</td>
<td>Επίπεδη τριγωνική</td>
<td>Κεκαμένη</td>
</tr>
</tbody>
</table>

Σχεδία: VSEPR

Valence Shell Electron Pair Repulsion
<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>δεσμικά ηλεκτρονικά ζεύγη</th>
<th>μονήρη ηλεκτρονικά ζεύγη</th>
<th>Διευθέτηση ζευγών</th>
<th>Μοριακή Γεωμετρία</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_4</td>
<td>4</td>
<td>0</td>
<td>Τετραεδρική</td>
<td>Τετραεδρική</td>
</tr>
<tr>
<td>AB_3E</td>
<td>3</td>
<td>1</td>
<td>Τετραεδρική</td>
<td>Τριγωνική κυκλικά/πυραμιδικά</td>
</tr>
<tr>
<td>Κατηγορία</td>
<td>δεσμικά ηλεκτρονικά ζεύγη</td>
<td>μονήρη ηλεκτρονικά ζεύγη</td>
<td>Διευθέτηση ζευγών</td>
<td>Μοριακή Γεωμετρία</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>AB_4</td>
<td>4</td>
<td>0</td>
<td>Τετραεδρική</td>
<td>Τετραεδρική</td>
</tr>
<tr>
<td>AB_3E</td>
<td>3</td>
<td>1</td>
<td>Τετραεδρική</td>
<td>Τριγωνική πυραμιδική</td>
</tr>
<tr>
<td>AB_2E_2</td>
<td>2</td>
<td>2</td>
<td>Τετραεδρική</td>
<td>Κεκαμένη</td>
</tr>
<tr>
<td>Κατηγορία</td>
<td>δεσμικά ηλεκτρονικά ζεύγη</td>
<td>μονήρη ηλεκτρονικά ζεύγη</td>
<td>Διευθέτηση ζευγών</td>
<td>Μοριακή Γεωμετρία</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>AB_5</td>
<td>5</td>
<td>0</td>
<td>Τριγωνική πυραμιδική</td>
<td>Τριγωνική πυραμιδική</td>
</tr>
<tr>
<td>AB_4E</td>
<td>4</td>
<td>1</td>
<td>Τριγωνική πυραμιδική</td>
<td>Παραμορφωμένο τετράεδρο</td>
</tr>
<tr>
<td>Κατηγορία</td>
<td>δεσμικά ηλεκτρονικά ζεύγη</td>
<td>μονήρια ηλεκτρονικά ζεύγη</td>
<td>Διευθέτηση ζευγών</td>
<td>Μοριακή Γεωμετρία</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>AB₅</td>
<td>5</td>
<td>0</td>
<td>Τριγωνική πυραμιδική</td>
<td>Τριγωνική πυραμιδική</td>
</tr>
<tr>
<td>AB₄E</td>
<td>4</td>
<td>1</td>
<td>Τριγωνική πυραμιδική</td>
<td>Παραμορφωμένο τετράεδρο</td>
</tr>
<tr>
<td>AB₃E₂</td>
<td>3</td>
<td>2</td>
<td>Τριγωνική πυραμιδική</td>
<td>Σχήματος T</td>
</tr>
</tbody>
</table>

![Diagram of AB₅ molecule with lone pairs](image)
<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>δεσμικά ηλεκτρονικά ζεύγη</th>
<th>μονήρη ηλεκτρονικά ζεύγη</th>
<th>Διευθέτηση ζευγών</th>
<th>Μοριακή Γεωμετρία</th>
<th>Σχήματος Τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_5</td>
<td>5</td>
<td>0</td>
<td>Τριγωνική διπυραμιδική</td>
<td>Τριγωνική διπυραμιδική</td>
<td>Σχήματος Τ</td>
</tr>
<tr>
<td>AB_4E</td>
<td>4</td>
<td>1</td>
<td>Τριγωνική διπυραμιδική</td>
<td>Παραμορφωμένο τετράεδρο</td>
<td></td>
</tr>
<tr>
<td>AB_3E_2</td>
<td>3</td>
<td>2</td>
<td>Τριγωνική διπυραμιδική</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB_2E_3</td>
<td>2</td>
<td>3</td>
<td>Τριγωνική διπυραμιδική</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κατηγορία</td>
<td>δεσμικά ηλεκτρονικά ζεύγη</td>
<td>μονήρη ηλεκτρονικά ζεύγη</td>
<td>Διευθέτηση ζευγών</td>
<td>Μοριακή Γεωμετρία</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>AB_6</td>
<td>6</td>
<td>0</td>
<td>Οκταεδρική</td>
<td>Οκταεδρική</td>
<td></td>
</tr>
<tr>
<td>AB_5E</td>
<td>5</td>
<td>1</td>
<td>Οκταεδρική</td>
<td>Τετραγωνική Πυραμιδική</td>
<td></td>
</tr>
</tbody>
</table>

Μοντέλο VSEPR

Valence Shell Electron Pair Repulsion
<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>δεσμικά ηλεκτρονικά ζεύγη</th>
<th>μονήρη ηλεκτρονικά ζεύγη</th>
<th>Διευθέτηση ζευγών</th>
<th>Μοριακή Γεωμετρία</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB_6)</td>
<td>6</td>
<td>0</td>
<td>Οκταεδρική</td>
<td>Οκταεδρική</td>
</tr>
<tr>
<td>(AB_5E)</td>
<td>5</td>
<td>1</td>
<td>Οκταεδρική</td>
<td>Τετραγωνική-πυραμιδική</td>
</tr>
<tr>
<td>(AB_4E_2)</td>
<td>4</td>
<td>2</td>
<td>Οκταεδρική</td>
<td>Επίπεδη, τετραγωνική</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Βήματα για την πρόβλεψη της μοριακής γεωμετρίας

1. Από τον τύπο Lewis βρίσκουμε τον αριθμό των μονήρων ηλεκτρονίων γύρω από το κεντρικό άτομο.

2. Διευθετούμε τα ηλεκτρονικά ζεύγη.

3. Οδηγούμαστε στη μοριακή γεωμετρία από τις κατευθύνσεις των δεσμικών ζευγών.

Ποιές είναι οι μοριακές γεωμετρίες των: SO_2 and SF_4?

![Diagram of SO2 and SF4 molecules with descriptions in Greek]
Πρόβλεψη μοριακής γεωμετρίας

- 3 ηλεκτρονικά ζεύγη (Επίπεδη τριγωνική).

Κεκαμένη ή γωνιακή
Πρόβλεψη μοριακής γεωμετρίας

- 4 ηλεκτρονικά ζεύγη (Τετραεδρική διευθέτηση).
Πρόβλεψη μοριακής γεωμετρίας

4 ηλεκτρονικά ζεύγη (Τετραεδρική διευθέτηση).

Τριγώνική πυραμιδική

Γωνιακή
Πρόβλεψη μοριακής γεωμετρίας

5 ηλεκτρονικά ζεύγη (τριγωνική διπυραμιδική).

- Γωνίες δεσμών 90° and 120°.
Διπολική Ροπή και Μοριακή Γεωμετρία

- Οι προβλέψεις του μοντέλου \textit{VSEPR} μπορούν να επιβεβαιωθούν με μετρήσεις διπολικής ροπής

- Η διπολική ροπή μετρά ποσοτικά τον διαχωρισμό φορτίων σε ένα μόριο
 - μετρείται σε μονάδες \textit{Debye} (D)
 - $1 \text{D} = 3,34 \times 10^{-30} \text{C.m}$

- Οι μετρήσεις διπολικών ροπών στηρίζονται στο ότι τα πολικά μόρια προσανατολίζονται μέσα σε ένα ηλεκτρικό πεδίο

* Peter Joseph William Debye (1884-1966)
 Αμερικανός Φυσικοχημικός. Μεγάλη η συνεισφορά του στη μελέτη της μοριακής δομής, χημειακών πολυμερών, ακτίνων Χ, και ηλεκτρολυτικών διαλυμάτων. Βραβείο Νόβελ στη Χημεία το 1936.
Διπολική ροπή και πολλά μόρια

\[\mu = Q \times r \]

\(Q \) είναι το φορτίο
\(r \) είναι η απόσταση

1 D = 3,36 x 10^{-30} \text{ C m}
Διπλοική Ροπή και Μοριακή Γεωμετρία

- Έλξη πολικού υγρού προς μια ηλεκτρισμένη ράβδο

 (a) Ο CCl₄ είναι μη πολικό υγρό και δεν έλκεται προς την ηλεκτρικά φορτισμένη ράβδο

 (b) Το νερό είναι πολικό υγρό και γι’ αυτό έλκεται προς τη ράβδο
Πολικά μόρια σε ηλεκτρικό πεδίο

Το ηλεκτρικό πεδίο προκαλεί προσανατολισμό των μορίων με το πεδίο.
Διπλολική Ροπή και Μοριακή Γεωμετρία

Resultant dipole moment = 1.46 D

Resultant dipole moment = 0.24 D
Η διπολική ροπή που οφείλεται στο μονήρες ζεύγος ηλεκτρονίων αντισταθμίζει τις διπολικές ροπές των δεσμών N-F ⇒ μικρή διπολική ροπή
Ποιά από τα παρακάτω μόρια είναι πολικά;
\(\text{H}_2\text{O}, \text{CO}_2, \text{SO}_2, \text{and CH}_4 \)
Dipole Moments of Some Polar Molecules

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Geometry</th>
<th>Dipole Moment (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>Linear</td>
<td>1.92</td>
</tr>
<tr>
<td>HCl</td>
<td>Linear</td>
<td>1.08</td>
</tr>
<tr>
<td>HBr</td>
<td>Linear</td>
<td>0.78</td>
</tr>
<tr>
<td>HI</td>
<td>Linear</td>
<td>0.38</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>Bent</td>
<td>1.87</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>Bent</td>
<td>1.10</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>Pyramidal</td>
<td>1.46</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Bent</td>
<td>1.60</td>
</tr>
</tbody>
</table>
ΑΝΑΚΕΦΑΛΑΙΟΣΗ

Θεωρία Δεσμού Σθένους

- Η Θεωρία Lewis δεν εξηγεί:
 - πώς και γιατί σχηματίζονται οι χημικοί δεσμοί
 - δεν δίνει πληροφορίες σχετικά με τις ενεργειακές μεταβολές που συνοδεύουν τον σχηματισμό του χημικού δεσμού
 - Δεν εξηγεί τα διαφορετικά μήκη δεσμών π.χ. H₂, HF, F₂

- Η Θεωρία Δεσμού Σθένους είναι μια προσεγγιστική θεωρία η οποία εξηγεί:
 - το σχηματισμό του χημικού δεσμού με την κβαντομηχανική
Θεωρία Δεσμού Σθένους

• Περιοχή Ι - Απειρη Απόσταση
 • Μηδενική αλληλεπίδραση μεταξύ των ατόμων

• Περιοχή ΙΙ - Ελκτικές Δυνάμεις
 • Καθώς τα ατόμα (οι πυρήνες) προσεγγίζουν, τα e- έλκονται από τον άλλο πυρήνα και ελαχιστοποιείται η ενέργεια* (μήκος δεσμού - bond length)

• Περιοχή ΙΙΙ - Απωθητικές Δυνάμεις
 • Όταν οι πυρήνες προσεγγίσουν πάρα πολύ, οι απωθητικές δυνάμεις αυξάνουν την ενέργεια του συστήματος εκθετικά

* Η μείωση της δυναμικής ενέργειας πρέπει να συνοδεύεται από απελευθέρωση ενέργειας
Θεωρία Δεσμού Σθένους

- Η έννοια του Υβριδισμού προκύπτει από την Θεωρία Δεσμού Σθένους

- Το αποτέλεσμα της διαδικασίας αυτής είναι η δημιουργία ενός υβριδισμένου (υβριδικού) τροχιακού που προκύπτει από τον συνδυασμό των ατομικών τροχιακών των μεμονωμένων ατόμων
Θεωρία Δεσμού Σθένους

- Μερικά βασικά σημεία:
 - Τα εσωτερικά e- δεν παίρνουν μέρος στον υβριδισμό
 - Η ανάμιξη γίνεται ανάμεσα στα τροχιακά του ίδιου ατόμου και όχι μεταξύ των e-
 - Το υβριδισμένο (υβριδικό) τροχιακό έχει ενέργεια ένδιαιμεση μεταξύ των ατομικών τροχιακών που συνδυάζονται
 - Η χωρητικότητα του κάθε υβριδισμένου (υβριδικού) τροχιακού είναι 2 ηλεκτρόνια
Θεωρία Δεσμού Σθένους

- Για να περιγράψουμε το χημικό δεσμό ακολουθούμε τα παρακάτω βήματα:
 - Γράφουμε τον τύπο κατά Lewis
 - Προσδιορίζουμε τη μοριακή γεωμετρία με το μοντέλο VSEPR
 - Από αυτήν προσδιορίζουμε τον υβριδισμό του κεντρικού ατόμου
 - Τοποθετούμε στα υβριδικά τροχιακά τα e- σθένους του ατόμου
 - Σχηματίζουμε δεσμούς επικαλύπτοντας τα υβριδικά τροχιακά με τροχιακά των άλλων ατόμων
Ερωτηματικά στη Θεωρία Δεσμού Σθένους

Το πείραμα δείχνει ότι το O_2 είναι παραμαγνητικό.

0 ασύζευκτα e-
Θα έπρεπε να είναι
diaμαγνητικό

Θεωρία Μοριακών Τροχιακών – δεσμοί
dημιουργούνται από την αλληλεπίδραση ατομικών
tροχιακών με σχηματισμό μοριακών τροχιακών.
Θεωρία Μοριακών Τροχιακών

- Η Θεωρία των Μοριακών Τροχιακών είναι μια θεωρία της ηλεκτρονικής δομής των μορίων με βάση μοριακά τροχιακά, τα οποία μπορεί να εκτείνονται σε διαφορετικά άτομα ή και σε ολόκληρο το μόριο.

- Στη θεωρία αυτή, καθώς τα άτομα προσεγγίζουν, τα τροχιακά τους επικαλύπτονται και σχηματίζουν μοριακά τροχιακά.

- Το μοριακό τροχιακό είναι η μαθηματική περιγραφή της περιοχής του μορίου όπου υπάρχει μεγάλη πιθανότητα να βρεθούν ηλεκτρόνια.

- Το μοριακό τροχιακό είναι ένας γραμμικός συνδυασμός ατομικών τροχιακών.

- Από τον συνδυασμό π.χ. δυο ατομικών τροχιακών θα προκύψουν δυο μοριακά τροχιακά.
Χαρακτηριστικά Μοριακών Τροχιακών

Η ηλεκτρονική πυκνότητα μεταξύ των πυρήνων μειώνεται.

... υπερυπερυψηλότερης ενέργειας...

... αντιδιαστικό μοριακό τροχιακό, μεγαλύτερης ενέργειας.

Η ηλεκτρονική πυκνότητα μεταξύ των πυρήνων αυξάνεται.

... δεσμικό μοριακό τροχιακό, χαμηλότερης ενέργειας...
Τι είναι το διάγραμμα μοριακών τροχιακών

Σχετικές ενέργειες των τροχιακών 1s του ατόμου H και των μοριακών τροχιακών σ₁s και σ₁s⁺ του H₂.

Τα βέλη δηλώνουν κατάληψη του σ₁s από ηλεκτρόνια στη θεμελιώδη κατάσταση του H₂.

Εναλλακτική απεικόνιση του διαγράμματος MO του H₂
Πρέπει να λάβουμε υπ’ όψη πόσος δεσμικός και πόσος αντιδεσμικός χαρακτήρας υφίσταται κατά την αλληλεπίδραση μεταξύ των δυο ατόμων

Η Τάξη Δεσμού (Bond Order) αναφέρεται στον αριθμό των δεσμών που υπάρχουν μεταξύ των δυο ατόμων

\[
\text{Τάξη Δεσμού} = \frac{1}{2}(n_b - n_{ab})
\]

όπου \(n_b \) = αριθμός δεσμικών ηλεκτρονίων

\(n_{ab} \) = αριθμός αντιδεσμικών ηλεκτρονίων

- Τάξη Δεσμού = 0 σημαίνει ότι το μόριο είναι πολύ ασταθές
- 'Θετική ακέραια τιμή τάξης δεσμού μας δίνει τον αριθμό των δεσμών μεταξύ των δυο ατόμων
Θεωρία Μοριακών Τροχιακών

• Αν θεωρήσουμε τα ατομικά τροχιακά σαν μαθηματικές συναρτήσεις που αναπαριστούν την ε-πυκνότητα, τότε για τον σχηματισμό μοριακών τροχιακών πρέπει είτε να τα
 - προσθέσουμε είτε να τα
 - αφαιρέσουμε
Θεωρία Μοριακών Τροχιακών

- Αν προσθέσουμε τα δυο ατομικά τροχιακά δημιουργείται ένα δεσμικό μοριακό τροχιακό.

- Το δεσμικό μοριακό τροχιακό έχει ηλεκτρονική πυκνότητα μεταξύ των ατόμων.
Θεωρία Μοριακών Τροχιακών

- Αν σφαιρίζουμε τα δυο ατομικά τροχιακά δημιουργείται ένα αντιδησμικό μοριακό τροχιακό.
 - Το αντιδησμικό μοριακό τροχιακό δεν έχει ηλεκτρονική πυκνότητα μεταξύ των ατόμων.
Θεωρία Μοριακών Τροχιακών

- Ποια είναι η διαφορά μεταξύ ενός δεσμικού και ενός μη δεσμικού (αντιδεσμικού) ζεύγους ηλεκτρονίων;

 - Το δεσμικό ζεύγος ηλεκτρονίων μοιράζεται μεταξύ δύο ατόμων

 - Το μη δεσμικό (αντιδεσμικό) ζεύγος ηλεκτρονίων είναι ένα ζεύγος το οποίο δεν συμμετέχει σε χημικό δεσμό
Έξι κανόνες για την κατασκευή διαγραμμάτων MO για διατομικά μόρια της 2ης περιόδου

1. Ο αριθμός των MO που σχηματίζονται, ισούται με τον αριθμό των συνδυαζόμενων ατομικών τροχιακών (AO).
2. Τα AO συνδυάζονται (επικαλύπτονται) με άλλα τροχιακά παρόμοιας ενέργειας, άσχετα αν τα τροχιακά αυτά περιέχουν ή όχι ηλεκτρόνια και πόσα.
3. Όσο μεγαλύτερη είναι η έκταση της επικάλυψης δυο τροχιακών, τόσο σταθερότερο (δηλαδή χαμηλότερης ενέργειας) είναι το δεσμικό MO και τόσο ασταθέστερο (δηλαδή υψηλότερης ενέργειας) το αντίδεσμικό MO.
4. Κάθε MO μπορεί να δεχθεί το πολύ δυο ηλεκτρόνια με αντίθετα spin (απαγορευτική αρχή του Pauli).
5. Σε MO της ίδιας ενέργειας (εκφυλισμένα τροχιακά) τα ηλεκτρόνια τοποθετούνται αρχικά ένα-ένα με παράλληλα spin (κανόνας του Hund).
6. Τα MO σ₁s και σ^*₁s θα είναι συμπληρωμένα με τέσσερα e και δεν συνεισφέρουν στο σχηματισμό του δεσμού, οπότε δεν τα λαμβάνουμε υπ' όψιν και συγκεντρώνουμε την προσοχή μας στα τροχιακά 2s και 2p του φλοιού σθένους.
Τάξη Δεσμού (Bond Order)

- σ_{1s}^*
- σ_{1s}
- σ_{1s}^*
- σ_{1s}^*
- σ_{1s}
- σ_{1s}
- σ_{1s}
- σ_{1s}

H_2^+: $\frac{1}{2}$
H_2: 1
He_2^+: $\frac{1}{2}$
He_2: 0
Σύνοψη: Θεωρία Μοριακών Τροχιακών

- Η Θεωρία Μοριακών Τροχιακών είναι ένας άλλος τρόπος περιγραφής του χημικού δεσμού

 - Το μοριακό τροχιακό ορίζεται σαν γραμμικός συνδυασμός ατομικών τροχιακών

 - Τα διαγράμματα μοριακών τροχιακών δείχνουν πώς παρόμοια ατομικά τροχιακά αλληλεπιδρούν μεταξύ τους για να σχηματίσουν δεσμικά και αντιδεσμικά μοριακά τροχιακά

 - Ηλεκτρόνια σε δεσμικά μοριακά τροχιακά αυξάνουν τη σταθερότητα του μορίου

 - Ηλεκτρόνια σε αντιδεσμικά μοριακά τροχιακά ελαττώνουν τη σταθερότητα του μορίου

 - Η Τάξη Δεσμού (Bond Order) μας δίνει πληροφορίες σχετικά με την σταθερότητα ενός μορίου
Θεωρία Μοριακών Τροχιακών

$2p_x + 2p_x \rightarrow \sigma^*_{2p}$ (αντιδεσμικό)

$2p_x \rightarrow \sigma_{2p}$ (δεσμικό)

$2p_z + 2p_z \rightarrow \pi^*_{2p}$ (αντιδεσμικό)

$2p_z \rightarrow \pi_{2p}$ (δεσμικό)

$2p_y + 2p_y \rightarrow \pi^*_{2p}$ (αντιδεσμικό)

$2p_y \rightarrow \pi_{2p}$ (δεσμικό)
– Για το Be₂
• \((σ_{1s})^2 (σ^*_{1s})^2\)
• \((σ_{2s})^2(σ^*_{2s})^2\)
• Υπάρχει το Be₂ ;

– Για το N₂
\[σ_{1s}^2σ^*_{1s}\ 2σ_{2s}^2σ^*_{2s}\ 2π_{2p}^2σ_{2p}^2\]
Τάξη δεσμού = \((10-4)/2=3\)
<table>
<thead>
<tr>
<th>Ενέργεια</th>
<th>Li₂</th>
<th>Be₂</th>
<th>B₂</th>
<th>C₂</th>
<th>N₂</th>
<th>O₂</th>
<th>F₂</th>
<th>Ne₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
</tr>
<tr>
<td></td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
</tr>
<tr>
<td></td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
<td>σ_{2p}^*</td>
</tr>
<tr>
<td></td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
<td>π_{2p}^*</td>
</tr>
<tr>
<td></td>
<td>σ_{2s}^*</td>
<td>σ_{2s}^*</td>
<td>σ_{2s}^*</td>
<td>σ_{2s}^*</td>
<td>σ_{2s}^*</td>
<td>σ_{2s}^*</td>
<td>σ_{2s}^*</td>
<td>σ_{2s}^*</td>
</tr>
<tr>
<td></td>
<td>σ_{2s}</td>
<td>σ_{2s}</td>
<td>σ_{2s}</td>
<td>σ_{2s}</td>
<td>σ_{2s}</td>
<td>σ_{2s}</td>
<td>σ_{2s}</td>
<td>σ_{2s}</td>
</tr>
</tbody>
</table>

Υπάρχουν μερικές ιδιαιτερότητες …
Δεσμικές ιδιότητες των ομοπυρηνικών διατομικών μορίων της 2ης περιόδου

<table>
<thead>
<tr>
<th>Μόριο</th>
<th>Τάξη δεσμού</th>
<th>Μήκος δεσμού (pm)</th>
<th>Ενέργεια δεσμού (kJ/mol)</th>
<th>Μαγνητικός χαρακτήρας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li₂</td>
<td>1</td>
<td>267</td>
<td>110</td>
<td>διαμαγνήτικό</td>
</tr>
<tr>
<td>Be₂</td>
<td>0</td>
<td>το μόριο αυτό δεν μπορεί να υπάρξει</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₂</td>
<td>1</td>
<td>159</td>
<td>290</td>
<td>παραμαγνήτικό</td>
</tr>
<tr>
<td>C₂</td>
<td>2</td>
<td>131</td>
<td>620</td>
<td>διαμαγνήτικό</td>
</tr>
<tr>
<td>N₂</td>
<td>3</td>
<td>110</td>
<td>941</td>
<td>διαμαγνήτικό</td>
</tr>
<tr>
<td>O₂</td>
<td>2</td>
<td>121</td>
<td>495</td>
<td>παραμαγνήτικό</td>
</tr>
<tr>
<td>F₂</td>
<td>1</td>
<td>143</td>
<td>155</td>
<td>διαμαγνήτικό</td>
</tr>
<tr>
<td>Ne₂</td>
<td>0</td>
<td>το μόριο αυτό δεν μπορεί να υπάρξει</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Καθώς η τάξη δεσμού μεγαλώνει, το μήκος του δεσμού μικραίνει και η ενέργεια δεσμού τείνει να μεγαλώνει.

Ο μαγνητικός χαρακτήρας των μορίων που προσδιορίζεται πειραματικά, προβλέπεται σωστά από τη θεωρία MO.
Τα 2s ατομικά τροχιακά έχουν χαμηλότερη ενέργεια από τα 2p, επομένως τα σ_{2s} μοριακά τροχιακά θα έχουν χαμηλότερη ενέργεια από τα σ_{2p}.

Όμως υπάρχει μεγαλύτερη αλληλεπικάλυψη μεταξύ των 2pₓ, 2pᵧ, άτομοι τροχιακών σε σχέση με τα 2pₓ, 2pᵧ, 2pᶻ τροχιακά, έτσι

- τα σ_{2p} μοριακά τροχιακά θα έχουν χαμηλότερη ενέργεια από τα π_{2p}.
- το σ^{*}_{2p} θα έχει υψηλότερη ενέργεια από τα π^{*}_{2p}.
αυξανόμενη 2s – 2p αλληλεπίδραση

- Καθός μειώνεται ο ατομικός αριθμός αυξάνονται οι αλληλεπιδράσεις μεταξύ του 2s ατομικού τροχιακού του ενός άτομου με το 2p τροχιακό του άλλου άτομου.
 - Καθός αυξάνεται η αλληλεπίδραση 2s-2p, η ενέργεια του σ_2s μοριακού τροχιακού ελαττώνεται ενώ η ενέργεια του σ_2p μοριακού τροχιακού αυξάνεται.

- Στο B_2, C_2 και N_2 το σ_2p τροχιακό έχει μεγαλύτερη ενέργεια σε σχέση με τα π_2p τροχιακά.
- Στο O_2, F_2 και Ne_2 το σ_2p τροχιακό έχει μικρότερη ενέργεια σε σχέση με τα π_2p τροχιακά.

Ω_2, F_2, Ne_2 Β_2, C_2, N_2
<table>
<thead>
<tr>
<th>Μεγάλη 2s – 2p αλληλεπίδραση</th>
<th>Μικρή 2s – 2p αλληλεπίδραση</th>
</tr>
</thead>
<tbody>
<tr>
<td>B<sub>2</sub></td>
<td>O<sub>2</sub></td>
</tr>
<tr>
<td>σ<sup>2p</sup></td>
<td>σ<sup>2p</sup></td>
</tr>
<tr>
<td>π<sup>2p</sup></td>
<td>π<sup>2p</sup></td>
</tr>
<tr>
<td>π<sup>2s</sup></td>
<td>π<sup>2s</sup></td>
</tr>
<tr>
<td>σ<sup>2s</sup></td>
<td>σ<sup>2s</sup></td>
</tr>
</tbody>
</table>

C₂	**F₂**
σ^{2p}	σ^{2p}
π^{2p}	π^{2p}
π^{2s}	π^{2s}
σ^{2s}	σ^{2s}

N₂	**Ne₂**
σ^{2p}	σ^{2p}
π^{2p}	π^{2p}
π^{2s}	π^{2s}
σ^{2s}	σ^{2s}

<table>
<thead>
<tr>
<th>Τάξη δεσμού</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ενθαλπία δεσμού (kJ/mol)</td>
<td>290</td>
<td>620</td>
<td>941</td>
</tr>
<tr>
<td>Μήκος δεσμού (angstrom)</td>
<td>1.59</td>
<td>1.31</td>
<td>1.10</td>
</tr>
<tr>
<td>Μαγνητική συμπεριφορά</td>
<td>Παραμαγνητικό</td>
<td>Λιπαντικό</td>
<td>Λιπαντικό</td>
</tr>
</tbody>
</table>

Κάθες αυξάνεται η τάξη δεσμού η ενέργεια δεσμού αυξάνεται ενώ το μήκος δεσμού μειώνεται.
Ενεργειακό δiάγραμμα MO για ετεροπυρηνικά
dιατομικά μόρια AB

Ετεροπυρηνικά: μόρια από
dιαφορετικά άτομα, π.χ. το
HF, LiH, CO, NO

Για διατομικά μόρια AB
στοιχείων της 2ης
περιόδου, και εφόσον η
dιαφορά
ηλεκτραρνητικότητας
μεταξύ Α και Β δεν είναι
σημαντική, ισχύει
προσεγγιστικά το διπλανό
diάγραμμα MO.

Το CO, με 10 e σθένους, έχει
ηλεκτρονική δομή
\((\sigma_{2s})^2(\sigma^*_{2s})^2(\pi_{2p})^4(\sigma_{2p})^2\)
και τάξη δεσμού \((8-2)/2=3\).
Πείραμα προσδιορισμού μαγνητικών ιδιοτήτων

Το δείγμα ζυγίζει την αποστολή μαγνητικού πεδίου

Παρουσία μαγνητικού πεδίου, το διαμαγνητικό δείγμα ζυγίζει λιγότερο

Παρουσία μαγνητικού πεδίου, το παραμαγνητικό δείγμα ζυγίζει περισσότερο
$\sigma_{1s} \sigma_{1s}^* \sigma_{2s} \sigma_{2s}^* \pi_{2p} \pi_{2p}^* \pi_{2p}^*$
Τύπωση δεσμού = (8-4)/2=2