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Fig. 14.3. The wavefunctions and
probability densities for a particle
confined to a rectangular surface. (a)
1,1 section; (b) ¥, ; section (rotate by
90° for 9, 5). (€) ¥22. The
corresponding probability densities are
labelled (a%), (b?), and (c?). Each
section is half the total function.
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The three-dimensional case, of a particle in an actual box, can be treated
in the same way, and the wavefunctions have another factor (for the
z-dependence), and the energy has an additional term.

An interesting feature of the solutions is obtained when the plane surface
is square, when L, =L and L,= L. Then

1/},,,,,,2 = (2/L) sin (n,7x/L) sin (n,my/L),
= {n? + n3}(h*/8mL?).
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14.1 | Quantum theory:

(a)

techniques and applications

(=)

(b)

Fig. 14.4. It is easier to represent the
functions in terms of contour
diagrams. Here we show contour
diagrams for (a) ¥, ; and (b) y;-ina
square well. Note that one can be
converted into the other by a 90°
rotation: we say that they are related
by a symmetry transformation. These
two functions are also degenerate (i.c.
have the same energy).

Consider the cases n,=1,n,=2and n;=2,n,=1:

Y1, =(2/L) sin (zx/L) sin (27y/L), E,,=5(h*/8mL?),
Y,1=(2/L) sin (2x/L) sin (zy/L), E,,=5(h*/8mL?).

The point to note is that more than one wavefunction (two in this case
correspond to the same energy. This is the condition of degeneracy. In thig
case, we say that the level with energy 5(h%/8mL?) is doubly degenerate.

The occurrence of degeneracy is related to the symmetry of the system
The two degenerate functions 1, , and 1, ; are shown in Fig. 14.4: becausg
the plane is square, we see that we can convert one into the other simply by
rotating the plane by 90°. This is not possible when the plane is not square
and then vy,, and ,; are non-degenerate. We shall see man,
examples of degeneracy in the pages that follow (e.g. in the hydroges
atom); and all of them can be traced to the symmetry properties of th
system.

14.1(d) Quantum leaks

If the potential energy of the particle does not rise to infinity when it is i
the walls of the container, then the argument that led to eqn (14.1.6) allo
the wavefunction to remain non-zero. If the walls are thin (so that t:l
potential energy falls to zero again after a finite distance), the exponenti
decay of the wavefunction stops, and it begins to oscillate like th
wavefunctions for the inside of the box, Fig. 14.5. This means that th
particle might be found on the outside of a container even though accordin
to classical mechanics it has insufficient energy to escape. This leakin
through classically forbidden zones is called tunnelling.

The Schrodinger equation lets us calculate the extent of tunnelling a
how it depends on the mass of the particle. In fact, from the result in e
(14.1.6) we can see that, since the wavefunction decreases exponentia
inside the wall, and does so with a rate that depends on \/m, light partic
are more able to tunnel through barriers than heavy ones. Tunnelling is v
important for electrons, and moderately important for protons; for heav
particles it is less important. A number of effects in chemistry (e.g. so
reaction rates) depend on the ability of the proton to tunnel more read
than the deuteron.

The kind of problem we can solve with the material developed so far]
illustrated by the case of a projectile (such as an electron or a protd
incident from the left on a region where its potential energy increa
sharply from zero to a finite, constant value V, remains there for a distan
L, and then falls to zero again, Fig. 14.6. This is a model of what happ¢
when particles are fired at an idealized metal foil or sheet of paper. We g
ask for the proportion of incident particles that penetrate the barrier W
their kinetic energy is less than V so that classically none can penetrate.

The strategy of the calculation (and of others like it) is as follows: '5

(1) Write down the Schrodinger equation for each zone of const
potential.

(2) Write down the general solutions for each zone using eqn (14.1.2)
the regions where V < E and eqn (14.1.6) for regions where V > E.

(3) Find the coefficients by ensuring that (a) the wavefunction
continuous at each zone boundary, and (b) the first derivatives of
wavefunctions are also continuous at the zone boundaries.
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