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Why we need theory and 
modeling ?

Explanation of experimental results

Material testing in silico

Designing novel materials
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Hierarchy of methodsHierarchy of methods

CI, MP

CASPT2

CI, MP

CASPT2
Length scale

Continuum electrostaticsContinuum electrostatics
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fs
p

s
n

s 
  
  
  
  
  
  
  
t i

m
e

SE, TBSE, TB

HF, DFTHF, DFT

nm



4

In past 30 years, computational power 

(driven by Moore’s Law) has increased 

by over 5 orders of magnitude
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Nano favors theory !!!Nano favors theory !!!Nano favors theory !!!Nano favors theory !!!
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What is Quantum Chemistry?

• Quantum Mechanics applied to Atoms and Molecules

• Aim: Understanding of Electronic Structure

• Solution of the electronic Schrödinger equation

• Derived: Properties of Atoms and Molecules
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Ab initio electronic structure theory

Hartree-Fock (HF)

Electron Correlation (MP2, CI, CC, etc.)

Molecular 

Properties

Geometry 

Prediction
Benchmarks for 

Parameterization

Transition States

Reaction Paths.

Spectroscopic

Observables

Electronic 

Structure

Goal: Insight into chemical phenomena.
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Hamiltonian for a system with N-particles

Sum of kinetic (T) and potential (V) energyˆ H = ˆ T + ˆ V 
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Time-Independent Schrödinger Equation
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Born-Oppenheimer Approximation (1927)

• Since nuclei are much heaver than electrons (mn/me=1836),

their velocities are much smaller.  

• To a good approximation (error <1/1000*), the Schrödinger equation can 
be separated into two parts:

– One part describes the electronic wavefunction for a fixed nuclear 
geometry.

– The second describes the nuclear wavefunction, where the 
electronic energy plays the role of a potential energy.

• So far, the Hamiltonian contains the following terms:

ˆ H = ˆ T n + ˆ T e + ˆ V ne

+

+ ˆ V ee + ˆ V nn
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Born-Oppenheimer Approx. cont.
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Limitations of the Born-Oppenheimer approximation

• The BO approx. is usually very good, but breaks down 

when two (or more) electronic states are close in energy 

at particular nuclear geometries.  In such situations, a “

non-adiabatic” wavefunction - a product of nuclear and 

electronic wavefunctions - must be used.
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Hartree-Fock Theory

Electron-electron interaction:
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Restricted and Unrestricted Hartree-Fock

1

2

3

4

5

RHF

Singlet

ROHF

Doublet

UHF

Doublet

α β

Energy

Restricted Hartree-Fock (RHF)

For even electron, closed-shell singlet states, electrons in a given MO 

with α and β spin are constrained to have the same spatial dependence.

Restricted Open-shell Hartree-Fock (ROHF)

The spatial part of the doubly occupied orbitals are restricted to be the same.

Unrestricted Hartree-fock (UHF)

α and β spinorbitals have different spatial parts.

Spinorbitals

φiσ(n)
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Potential energy curves

• Restricted HF does not 
‘dissociate’ correctly

H H

HH

HH

RHF

UHF
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Basis sets

• Mathematical trick : Instead of looking for an unknown 
functions (ψ) we are searching for coefficients (c).

• “Atoms-in-Molecule” approach: Atomic electron density 
is only weakly perturbed in formation of molecule

• Hydrogen-like functions centered at atoms in molecule

• Additional functions for specific purposes (polarization, 

correlation, bonding etc.)

( , , ) ( , , )n n

n

x y z c x y zψ = Φ∑
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Basis sets: STOs and GTOs

• Slater-Type Orbitals are 
H like

• Gaussian Type Orbitals 

• α: ‘exponent’
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Basis sets: Why GTOs ?

• Use of atom-centered 
GTOs

• Products of two GTOs at 
centers A, B gives GTO 

at center E

• Hence: Ease of 
integration!

• Much faster than with 
STOs, despite increased 

number

Situation in molecules:

Atomic centers A,B
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Standard basis sets: Overview

• STO-NG: N GTO per STO

• Split-valence 6-31+G(*) sets: 

SZ (core)/DZ(valence), 

+: diffuse functions

*: polarization functions

Z(zeta): Number of contracted functions

• (aug)-cc-(p)VXZ: Correlation-consistent basis 
sets
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Basis sets: Polarization functions

• Polarization of atomic density upon formation of chemical bond
• Molecular field breaks atomic symmetry !
• Use of higher angular-momentum functions

E.g. p-functions for H , d-functions for C, etc.
• Allows orbitals to change shape

1s 1s+pz

z
atom

atom
atom
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Complete Basis Set limit

EHF

# basis functions

CBS

STO-3G

3-21G

6-311G**

6-31G

HF-limit
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Configuration Interaction (CI)

• Principles:

Based on HF (or MCSCF) wave function (orbitals)

Linear expansion of many-particle wave function:
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c: expansion coefficients (c0>90%)

Ψ: Slater determinants, ground and excited
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CI: Excitation Level

• Double excitations couple directly to reference state

• All others couple indirectly (coupled linear equations) 

• Strategy: Select important higher excitations !

The Hamiltonian matrix in determinant basis
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Full-CI: the computational limitation

Full CI is the most accurate method for a define basis set
but, it can be applied only to v. small molecules.

Apply only a few 

type of excitations

CI-D

CI-SD

…

Apply all possible 

excitations inside a 

chosen window of 

energies around 

the gap

CAS

Combination of both

C
A

S
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Moller-Plesset Perturbation Theory

• Principles:

Idea: Electron correlation is a perturbation 

(<1% of total energy)

Based on Rayleigh-Schrödinger PT

Single-reference method !

Size-consistent.

1 HF

i j iij

V v
r<

= −∑ ∑Electron correlation:
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MPPT: Procedure

• Assume solution of zero-order 
problem (HF problem):
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Density Functional Theory

• Total energy as functional of the electron density:

[ ] [ ] [ ] [ ]
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= + +
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• T: Kinetic Energy

• U: Coulomb interactions

• xc: Exchange & correlation interactions

:Φ= occupied MOs

Hohenberg & Kohn* Theorem (1964):  The ground state properties 
of every system are function of its charge density (p)

* Nobel price 1998
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DFT: XC functionals

• Local Density Approximation (LDA) 

No gradient of electron density in Exc

Like a uniform electron gas !

• Generalized Gradient Approximation (GGA)

Gradient corrected density

• Hybrid Functionals

Becke (B) LYP, B3LYP functionals

Contain a contribution of HF exchange interaction



36

Geometry 

optimization Initial Geometry

Coordination system 

Symmetry
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New Coordinates for 

lowering total energy

Convergence

Structural &

Electronic 
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