Introduction to \textit{ab-initio} methods and relation to nanomaterials research

George E. Froudakis
Associate Professor
Dept. of Chemistry
Uni. of Crete - Greece
Why we need theory and modeling?

- Explanation of experimental results
- Material testing *in silico*
- Designing novel materials
In past 30 years, computational power (driven by Moore’s Law) has increased by over 5 orders of magnitude.
Nano favors theory !!!
What is Quantum Chemistry?

- Quantum Mechanics applied to Atoms and Molecules
- Aim: Understanding of Electronic Structure
- Solution of the electronic Schrödinger equation
- Derived: Properties of Atoms and Molecules
Ab initio electronic structure theory
Hartree-Fock (HF)
Electron Correlation (MP2, CI, CC, etc.)

Goal: Insight into chemical phenomena.
Part 1: Essential Concepts & Techniques

Chapter 1: Computational Models & Model Chemistries .. 3
 An Overview of Computational Chemistry ... 3
 Molecular Mechanics ... 4
 Electronic Structure Methods .. 5
 Model Chemistries ... 7
 Defining Model Chemistries .. 9
 References .. 11

Appendices

Appendix A: The Theoretical Background .. 253
 The Schrödinger Equation ... 253
 The Molecular Hamiltonian .. 255
 Atomic Units .. 256
 The Born-Oppenheimer Approximation ... 256
 Restrictions on the Wavefunction .. 257
 Hartree-Fock Theory ... 258
 Molecular Orbitals .. 259
 Basis Sets .. 261
 The Variational Principle .. 262
 The Roothaan-Hall Equations .. 263
 Open Shell Methods .. 264
 Electron Correlation Methods .. 265
 Configuration Interaction .. 265
 Møller-Plesset Perturbation Theory ... 267
 Density Functional Theory .. 272
 The Complete Basis Set Extrapolation .. 278
 References .. 282
Chapter 2: Single Point Energy Calculations .. 13
 Setting Up Energy Calculations .. 13
 The Route Section ... 14
 The Title Section .. 15
 The Molecule Specification Section 15
 Multi-Step Jobs ... 15
 Locating Results in Gaussian Output ... 16
 Standard Orientation Geometry ... 16
 Energy .. 17
 Molecular Orbitals and Orbital Energies 18
 Charge Distribution ... 20
 Dipole and Higher Multipole Moments 20
 CPU Time and Other Resource Usage 21
 Predicting NMR Properties ... 21
 Exercises .. 22
 References ... 37

Chapter 3: Geometry Optimizations ... 39
 Potential Energy Surfaces ... 39
 Locating Minima ... 40
 Convergence Criteria .. 41
 Preparing Input for Geometry Optimizations 42
 Examining Optimization Output ... 43
 Locating Transition Structures ... 46
 Handling Difficult Optimization Cases 47
 Exercises .. 49
 References ... 59
Hamiltonian for a system with N-particles

\[\hat{H}(r)\Psi(r) = E\Psi(r) \]

\[\hat{H} = \hat{T} + \hat{V} \]

Sum of kinetic (T) and potential (V) energy

\[\hat{T} = \sum_{i=1}^{N} \hat{T}_i = -\sum_{i=1}^{N} \frac{\hbar^2}{2m_i} \nabla_i^2 = -\sum_{i=1}^{N} \frac{\hbar^2}{2m_i} \left(\frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2} \right) \]

Kinetic energy

\[\nabla_i^2 = \left(\frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2} \right) \]

Laplacian operator

\[\hat{V} = \sum_{i=1}^{N} \sum_{j>1}^{N} V_{ij} = \sum_{i=1}^{N} \sum_{j>1}^{N} \frac{q_i q_j}{r_{ij}} \]

Potential energy
\[\psi = \psi(R_1, R_2, \ldots, R_m, r_1, r_2, \ldots, r_n) \]

\[H = T_n + T_e + V_{ee} + V_{nn} + V_{en} \]

\[T_n = -\sum_{l=1}^{m} \frac{1}{2M_l} \nabla^2_R \]

\[T_e = -\sum_{i=1}^{n} \frac{1}{2} \nabla^2_i \]

\[V_{ee} = \sum_{i=1}^{n} \sum_{j<i} \frac{1}{|r_i - r_j|} \]

\[V_{nn} = \sum_{l=1}^{m} \sum_{J<l} \frac{Z_l Z_J}{|R_l - \bar{R}_J|} \]

\[V_{en} = -\sum_{i=1}^{n} \sum_{l=1}^{m} \frac{1}{|r_i - \bar{R}_l|} - \frac{1}{|r_j - \bar{R}_J|} \]
Born-Oppenheimer Approximation (1927)

• So far, the Hamiltonian contains the following terms:
\[\hat{H} = \hat{T}_n + \hat{T}_e + \hat{V}_{ne} + \hat{V}_{ee} + \hat{V}_{nn} \]

• Since nuclei are much heavier than electrons \((m_n/m_e=1836)\), their velocities are much smaller.
• To a good approximation (error <1/1000*), the Schrödinger equation can be separated into two parts:

 – One part describes the electronic wavefunction for a fixed nuclear geometry.
 – The second describes the nuclear wavefunction, where the electronic energy plays the role of a potential energy.
Born-Oppenheimer Approx. cont.

\[
H \psi = E \psi \\
H = H_e + T_n \\
\psi = \psi^e_i \psi^n_j \\
e : H_e \psi^e_i = E^e_i \psi^e_i \Rightarrow \\
n : (T_n + E^e_i) \psi^l_j
\]
Limitations of the Born-Oppenheimer approximation

• The BO approx. is usually very good, but breaks down when two (or more) electronic states are close in energy at particular nuclear geometries. In such situations, a “non-adiabatic” wavefunction - a product of nuclear and electronic wavefunctions - must be used.
Hartree-Fock Theory

Electron-electron interaction:

\[V(r_1, r_i) = \frac{e^2}{4\pi\varepsilon_0} \left[-\frac{Z}{r_1} + \sum_{i+1} \frac{1}{r_{1i}} \right] \]

\[V(r_1) \approx \frac{e^2}{4\pi\varepsilon_0} \left[-\frac{Z}{r_1} + \sum_{i+1} \frac{1}{r_{1i}} \right] \]

\[V^{HF}(r_1) \approx \frac{e^2}{4\pi\varepsilon_0} \left[-\frac{Z}{r_1} + \sum_{i+1} \frac{1}{r_{1i}} \right] \]
Self-Consistent-Field

Initial Guess for the orbitals

\[V^{HF}(r_1) \]

Self consistency

\[-\frac{\hbar^2}{2m} \left(\frac{\partial^2 \psi}{\partial x_1^2} + \frac{\partial^2 \psi}{\partial y_1^2} + \frac{\partial^2 \psi}{\partial z_1^2} \right) + V^{HF}(r_1)\psi = E\psi \]

E^{HF}, \Psi^{HF} \Rightarrow new orbitals
Restricted and Unrestricted Hartree-Fock

Restricted Hartree-Fock (RHF)
For even electron, closed-shell singlet states, electrons in a given MO with α and β spin are constrained to have the same spatial dependence.

Restricted Open-shell Hartree-Fock (ROHF)
The spatial part of the doubly occupied orbitals are restricted to be the same.

Unrestricted Hartree-fock (UHF)
α and β spinorbitals have different spatial parts.
Potential energy curves

Restricted HF does not ‘dissociate’ correctly

Figure 4.3 6-31G** potential energy curves for H₂.
Basis sets

\[\psi(x, y, z) = \sum_{n} c_n \Phi_n(x, y, z) \]

- **Mathematical trick**: Instead of looking for an unknown functions (\(\psi\)) we are searching for coefficients (\(c\)).
- “**Atoms-in-Molecule**” approach: Atomic electron density is only weakly perturbed in formation of molecule
- Hydrogen-like functions centered at atoms in molecule
- Additional functions for specific purposes (polarization, correlation, bonding etc.)
Basis sets: STOs and GTOs

- Slater-Type Orbitals are H like
- Gaussian Type Orbitals
- α: ‘exponent’
Basis sets: Why GTOs?

Situation in molecules:

- Use of atom-centered GTOs
- Products of two GTOs at centers A, B gives GTO at center E
- Hence: Ease of integration!
- Much faster than with STOs, despite increased number

Atomic centers A,B
Standard basis sets: Overview

- **STO-NG**: N GTO per STO

- **Split-valence 6-31+G(*) sets**:
 SZ (core)/DZ(valence),
 +: diffuse functions
 *: polarization functions
 \(Z(\text{zeta})\): Number of contracted functions

- **(aug)-cc-(p)VXZ**: Correlation-consistent basis sets
Basis sets: Polarization functions

- Polarization of atomic density upon formation of chemical bond
- Molecular field breaks atomic symmetry!
- Use of higher angular-momentum functions
 E.g. p-functions for H, d-functions for C, etc.
- **Allows orbitals to change shape**
Complete Basis Set limit

\[E_{HF} \]

HF-limit

CBS

basis functions

- STO-3G
- 3-21G
- 6-31G
- 6-311G**
Configuration Interaction (CI)

- Principles:
 Based on HF (or MCSCF) wave function (orbitals)
 Linear expansion of many-particle wave function:

\[\Psi_{CI} = c_0 \psi_0 + \sum_{ar}^c c^r_{a} \psi^r_{a} + \sum_{a<b}^{rs} c_{ab}^{rs} \psi^{rs}_{ab} + \sum_{a<b<c}^{rst} c_{abc}^{rst} \psi^{rst}_{abc} + \ldots \]

- \(c \): expansion coefficients (\(c_0 > 90\% \))
- \(\Psi \): Slater determinants, ground and excited
CI: Excitation Level

The Hamiltonian matrix in determinant basis

Anregung	$	\Psi_0\rangle$	$	S\rangle$	$	D\rangle$	$	T\rangle$	$	Q\rangle$		
$\langle \Psi_0	\hat{H}	\Psi_0 \rangle$	0	$\langle \Psi_0	\hat{H}	D \rangle$	0	0	...			
$\langle S	\hat{S} \rangle$	$\langle S	\hat{H}	S \rangle$	$\langle S	\hat{H}	D \rangle$	$\langle S	\hat{H}	T \rangle$	0	...
$\langle D	\hat{S} \rangle$	$\langle D	\hat{H}	D \rangle$	$\langle D	\hat{H}	T \rangle$	$\langle D	\hat{H}	Q \rangle$...	
$\langle T	\hat{S} \rangle$	$\langle T	\hat{H}	T \rangle$	$\langle T	\hat{H}	Q \rangle$...				
$\langle Q	\hat{S} \rangle$	$\langle Q	\hat{H}	Q \rangle$...							

- Double excitations couple directly to reference state
- All others couple indirectly (coupled linear equations)
- Strategy: Select important higher excitations!
Full-CI: the computational limitation

Full CI is the **most accurate** method for a define basis set but, it can be applied only to v. small molecules.

- Apply only a few type of excitations
 - CI-D
 - CI-SD
 - ...
- Apply all possible excitations inside a chosen window of energies around the gap
- Combination of both

CAS
Moller-Plesset Perturbation Theory

Electron correlation: \[V = \sum_{i<j} \frac{1}{r_{ij}} - \sum_i v^{HF} \]

- Principles:

 Idea: Electron correlation is a perturbation

 \(<1\%\) of total energy

 Based on Rayleigh-Schrödinger PT

 Single-reference method!

 Size-consistent.
MPPT: Procedure

• Assume solution of zero-order problem (HF problem):
 \[H_0 \Psi_0 = \sum_i f(i)\Psi_0 = E^{(0)}_0 \Psi_0 \]

• Definition of a perturbing potential:
 \[V = \sum_{i<j} \frac{1}{r_{ij}} - \sum_i \nu^{HF} \]

• Total electronic Hamiltonian:
 \[H = H_0 + V \]

• Apply Rayleigh-Schrödinger PT
 \[E_i^{(2)} = \sum_{n \neq i} \left| \frac{\langle \Psi_i^{(0)} | \tilde{V} | \Psi_n^{(0)} \rangle}{E_i^{(0)} - E_n^{(0)}} \right|^2 \]
Density Functional Theory

Hohenberg & Kohn* Theorem (1964): The ground state properties of every system are function of its charge density \((\rho)\)

- **Total energy as functional of the electron density:**

 \[
 E[\rho] = T[\rho] + U[\rho] + E_{xc}[\rho]
 \]

 \[
 p(r) = \sum_{i} |\phi_i(r)|^2 \quad :\Phi= \text{occupied MOs}
 \]

 - T: Kinetic Energy
 - U: Coulomb interactions
 - xc: Exchange & correlation interactions

* Nobel price 1998
DFT: XC functionals

- **Local Density Approximation (LDA)**
 No gradient of electron density in E_{xc}
 Like a uniform electron gas!

- **Generalized Gradient Approximation (GGA)**
 Gradient corrected density

- **Hybrid Functionals**
 Becke (B) LYP, B3LYP functionals
 Contain a contribution of HF exchange interaction
Geometry optimization

Initial Geometry

Coordination system
Symmetry

$H\Psi = E\Psi \rightarrow E_e$

∇E_e

New Coordinates for lowering total energy

Convergence

YES

Structural & Electronic Properties

NO