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10 Recent Developments 
in Controlling Silica and 
Magnesium Silicate Foulants 
in Industrial Water Systems

Konstantinos D. Demadis

10.1 INTRODUCTION

Fouling presents an enormous challenge in industrial process waters [1]. Often system operators are 

obligated to discard critical equipment components because of fouling and the inability to remove it. 

Even if mechanical or chemical cleaning are viable options, they require several hours, total system 

shutdowns, and high costs [2]. Foulants could be organic or inorganic, as illustrated in Figure 10.1. 

Organic foulants are a result of poor system biocontrol, or deposition of organic matter brought 

into the system from external sources (e.g., a river or lake) [3]. Inorganic foulants include crystal-

line sparingly soluble salts such as calcium carbonate(s), calcium sulfate(s), barium, and strontium 

sulfates, as well as amorphous and colloidal deposits, such as amorphous calcium phosphate, silica, 

magnesium silicate, and many others, depending on the particular water chemistry [4]. This chapter 

deals with silica and metal silicate scales and deposits (with an emphasis on magnesium silicate).
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Silica and magnesium silicate are poorly studied foulants and established methods for their con-

trol are not satisfactorily developed. Perhaps the reason for that is their scarcity in water systems; 

their presence is rather limited to those waters that satisfy one of the following three conditions: 

(a) contain high levels of silica, (b) contain high levels of magnesium, or (c) operate at high pH regions 

(>8.5). The purpose of this chapter is to review the “state of the art” of the formation and control 

of silica and magnesium silicate and to present efforts for their control using chemical additives. 

Throughout this chapter, the term “soluble silica” means “molybdate-reactive silica.”

10.2 FORMATION AND GROWTH OF AMORPHOUS SILICA

The formation, precipitation, and deposition of amorphous silica in process industrial waters 

have been a subject of intense interest. In parallel, there is also substantial focus on biosilica 

formation, due to the fact that silica is used by nature as a structural material for several organ-

isms, such as diatoms [5]. Silica scale formation is a highly complex process [6]. It is usually 

favored at a pH level of less than 8.5, whereas magnesium silicate scale forms at a pH level of 

greater than 8.5. Available data suggest that silica solubility is largely independent of pH in 

the range of 6–8. This pH region of minimum silica solubility and silicic acid polymerization 

has a maximum rate, as shown in Figure 10.2. Silica exhibits normal solubility characteristics. 

Its solubility increases proportionally to temperature. In contrast, magnesium silicate exhibits 

inverse solubility. Other forms of silica, e.g., quartz (crystalline SiO2) and glass also possess 

“normal” solubility, but they are both less soluble than amorphous silica. This is shown clearly 

in Figure 10.3.

Silica formation is actually a polymerization event. When silicic acid/silicate ions condense and 

polymerize, they form a plethora of structural motifs, including rings of various sizes, cross-linked 

polymeric chains of different molecular weights, oligomeric structures, etc. [7]. The resulting silica 

scale is a complex and amorphous product (colloidal silica)—a complicated mixture of the above 

components. Silicic acid polymerization starts with an attack of a deprotonated, negatively charged 

silicate ion to a silicic acid molecule, yielding an initial “dimer,” which then continues to undergo 

further attack. The initial stages of the silica dimerization/oligomerization/polymerization process 

are shown in Figure 10.4. This results in random polymer chain growth that produces silica nano-

particles. These, in turn, can further grow (by incorporation of silicic acid onto the silica particle 

surface) or agglomerate with other nanoparticles to give larger particles.

Operation in a high-pH regime is not necessarily a solution for combating silica scale. Water 

system operators must take into account the presence of magnesium (Mg2+) and other scaling ions 

such as calcium (Ca2+). As will be discussed later, other metal cations may aggravate metal silicate 

fouling. A pH adjustment to greater than 8.5 might result in the massive precipitation of magnesium 

silicate if high levels of Mg2+ are present or in calcium carbonate (CaCO3) or calcium phosphate if 

high levels of these ions are overlooked.

Co
rro
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n

Scale deposits

Biofouling

Industrial
water

problems

FIGURE 10.1 Schematic depiction of industrial water problems. (Reproduced from Demadis, K.D. et al., 

Desalination, 213, 38, 2007. With permission.)
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FIGURE 10.4 Initial steps in silicic acid polymerization. (Reproduced from Ketsetzi, A. et al., Desalination, 

223, 487, 2008. With permission.)
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Silica precipitation can also be aggravated by the presence of metal ions such as iron (Fe2+/3+) or 

aluminum (Al3+) and their hydroxides. Corroded steel surfaces (e.g., on pipes or heat exchangers) 

are prone to silica fouling. Iron oxides/hydroxides act as deposition matrices for silica (either soluble 

or colloidal) deposits.

There are three principal ways by which silica forms [8]: surface deposition, bulk precipitation, 

and in living organisms.

Surface deposition: This occurs as a deposit on a solid surface where silicic acid condenses with 

any solid surface possessing −OH groups. If the surface contains M–OH moieties (M = metal), this 

reaction is further enhanced. Such pronounced silica deposition phenomena in the water treatment 

industry are evident on metallic surfaces that have suffered severe corrosion on a surface covered 

with metal oxides/hydroxides. Once the receptive surface is covered with silica scale, additional 

silica is deposited on an already formed silica fi lm.

Bulk precipitation: This occurs as colloidal silica particles grow through the aforementioned 

condensation reaction. The particles collide with each other and agglomerate, forming larger 

particles.

In living organisms: This form of silica is called biogenic or biosilica and appears in certain 

microorganisms such as diatoms that have the ability to remove and deposit silica from highly 

undersaturated solutions into precisely controlled structures of intricate design [9]. It should be 

mentioned that sessile microorganisms in a biofi lm-fouled heat exchanger can entrap colloidal 

silica. The high affi nity of soluble silica toward extracellular biopolymers such as polysaccharides 

has also been recognized.

10.3 SILICA SCALE CONTROL

The current practices for combating silica scale growth in industrial waters include operation at 

low cycles of concentration (The number of cycles of concentration indicated how many times the 

concentration of a certain water-soluble species has been increased.), prevention of “other” scale 

formation, pretreatment [10], and inhibitor or dispersant use. This section focuses on the inhibition 

of silica polymerization by the use of polymers.

Operation at low cycles of concentration is a common practice, but one that consumes large 

amounts of water. In a cooling tower operating at a pH level of less than 7.5, soluble silica generally 

should be maintained below 200 ppm (as SiO2). For a pH level higher than 7.5, soluble silica should 

be maintained below 100 ppm (as SiO2). One should bear in mind that Mg2+ levels also should be 

taken into account at a pH level greater than 7.5. In this case, the product (ppm Mg as CaCO3) × 

(SiO2 as SiO2) should be below 20,000.

Prevention of “other” scale formation indirectly interferes with the propensity of silica scale 

to co-precipitate with other scales [11]. The method is based on the prevention of other scaling 

species such as CaCO3 or calcium phosphate and indirectly benefi ts the whole cooling tower 

operation. CaCO3 precipitates provide a crystalline matrix in which silica can be entrapped and 

grown. In environments in which CaCO3 or any other mineral precipitate is prevented completely, 

higher silica levels generally are tolerated in the process water as opposed to those environments 

in which other scales are controlled ineffectively.

Pretreatment involves reactive or colloidal silica removal in precipitation softeners through 

an interaction between silica and a metal hydroxide. Both iron hydroxide, Fe(OH)3, and alumi-

num hydroxide, Al(OH)3, have shown silica-removal capabilities, although magnesium hydroxide, 

Mg(OH)2, is considered to be more effective. In addition, silica can be removed through reverse 

osmosis (RO) and ion exchange techniques, as well as desilicizers. RO membranes are not immune 

to silica scale, which forms as a gelatinous mass on the membrane surface. It can then dehydrate, 

forming a cement-like deposit [12].
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10.4 SILICA GROWTH INHIBITION BY THE USE OF CHEMICAL ADDITIVES

The use of inhibitors or dispersants to control silica scale generally follows two approaches: (a) 

inhibition and (b) dispersion. Inhibition is defi ned as the prevention of silicic acid oligomerization 

or polymerization. As a result, silicic acid remains soluble and, therefore, formation of colloidal 

silica is prevented. Dispersion, on the other hand, is the prevention of particle agglomeration to form 

larger-size particles and the prevention of the adhesion of these particles onto surfaces.

A number of products are available commercially for silica scale control in RO, geothermal, and 

evaporative cooling water applications. A detailed discussion of these commercial products is not the 

intent of this chapter. However, some promising chemistries will be discussed herein. Much informa-

tion about commercial silica scale treatment can be found on the Internet through any of the popular 

search engines. In addition, several proprietary technologies can be found in patent literature.

Amjad et al. [13] have tested a number of polymers for silica inhibition with an emphasis on 

reverse osmosis systems. They discovered that a proprietary polymer at a polymer:silica ratio of 1:12 

can maintain ∼500 ppm of soluble silica in a pilot scale RO system for about 5 h. The conditions of 

the study were 600 ppm initial silica, 200 ppm Ca, 120 ppm Mg, and pH 7 at 40°C. A mixture con-

taining molybdate ( −2
4MoO ), phosphonate (diethylenetriamine-penta(methylene-phosphonic acid), 

and a copolymer of acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid (AA:SA) was 

found to be effective in preventing the formation and deposition of silica-containing deposits [14]. 

A carboxylate/sulfonate/balanced terpolymer was tested in the fi eld [15]. This multipolymer contains 

balanced hydrophilic/hydrophobic functional groups that enhance adsorption of the dispersant onto 

colloidal silica and magnesium silicate composite scales when the temperature is raised. In addition, 

the multipolymer contains sulfonate and carboxylate groups that impart tolerance to soluble iron and 

superior dispersancy. The presence of the hydrophilic groups serves to induce steric repulsion between 

silica particles that have polymer chains adsorbed onto them. In another study, a polyanionic/neutral 

polymer at 12.5 ppm maintained soluble silica up to 370 ppm in RO systems [16].

Recent research in our laboratories has shown that “small molecules” (cationic or anionic) are not 

active in silica scale inhibition under conditions and dosages pertinent to water treatment systems 

[17]. Furthermore, anionic polymers have also shown inactivity; one literature example showed that 

modifi ed polyacrylates (at dosages > 1000 ppm) have shown some inhibition [18]. Therefore, poly-

meric additives that contain some degree of cationic charge were sought. The schematic structures 

of some inhibitors are shown in Figure 10.5.

The selected polymers show a variety of structural features. All contain some degree of cat-

ionic charge. Some (PAMAM-1, PAMAM-2, PEI, PALAM, PAMALAM) possess cationic charge 

exclusively. Others (PPEI, PCH) are zwitterionic, i.e., they have cationic and anionic charge on the 

polymer backbone. Some polymers possess a positive charge by virtue of the protonated amine 

groups (PAMAM-1, PAMAM-2, PEI, PALAM), while others have a “pure” cationic charge due to a 

tertiary N group (PAMALAM). These additives have been extensively tested with varying dosages. 

Figure 10.6 presents silicic acid stabilization results with 40 ppm dosage for all polymers.

It is evident from Figure 10.6 that all polymers show inhibitory activity (higher soluble silicate 

levels than the “control” [17]). PAMAM-1 and PAMAM-2 (both have their surface amine groups pro-

tonated at pH 7) are very effective inhibitors at a dosage of 40 ppm. The presence of protonated amine 

groups is not the only necessary condition for good inhibition. Notice that polymers PEI and PALAM 

(also having their amine groups protonated at pH 7) show rather poor performance. This could be 

explained by the fact that excessive cationic charge causes the polymeric additive to be entrapped and 

hence deactivated within the colloidal silica matrix. PAMALAM, which is a polymer that possesses 

a tertiary N group, is a “medium” performance inhibitor. From the zwitterionic polymers (PPEI and 

PCH), PPEI is a very effective inhibitor. In this case, it appears that the negative charge (−PO3H
− for 

PPEI) “balances” the positive charge in such a way that the polymer continues to be active, but inhibi-

tor entrapment and deactivation is stopped. For the PCH polymer, perhaps the anionic charge (due to 

−PO3H
−) is too excessive and the cationic charge (necessary for inhibition) is “neutralized.”
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When the polymer dosage is doubled (an increase from 40 to 80 ppm), a number of interesting 

features appear in the inhibition activity (Figure 10.7). PAMAM-1 retains its inhibitory activity, 

in contrast to PAMAM-2, which substantially drops in performance (from 374 to 238 ppm soluble 

silicate). PEI, PALAM, PPEI, and PCH retain their previous inhibitory activity, with only minor 

alterations. The only polymer that increases its activity is PAMALAM. Further dosage increase, 

however, caused no further solubility enhancement (data not shown).

It is apparent that an increase in inhibitor dosage has detrimental effects on inhibitory activity. 

This has been observed before for other cationic inhibitors [17c]. It can be explained upon the 

examination of the possible silica inhibition mechanism. Experimental results from our group 

have supported the premise that anionic molecules (either monomeric or polymeric) have no 

effect on silicate polymerization [17c]. In contrast, cationic polymeric molecules are effective 

silica scale inhibitors [17]. When silicate polymerization takes place in the presence of a cat-

ionic polymeric additive, there are a number of competing reactions taking place concurrently: 

(a) polymerization of silicic acid. This occurs through an SN2-like mechanism that involves the 

attack of a monodeprotonated silicic acid molecule on a fully protonated silicic acid molecule. 

This pathway generates at fi rst short-lived silicate dimers, which in turn continue to polymerize 

in a random way to eventually yield colloidal silica particles. (b) Silicate ion stabilization by the 

cationic additive. This is the actual inhibition step and occurs presumably through cation–anion 

interactions, and (c) fl occulation between the polycationic inhibitor and the negatively charged 

colloidal silica particles (at pH 7) that are formed by the uninhibited silicate polymerization 

(Figure 10.8).

The cationic inhibitor is trapped within the colloidal silica matrix, based on process (c). This is 

demonstrated by the appearance of a light fl occulent precipitate (or dispersion at times). Inhibitor 

entrapment causes its depletion from solution and its deactivation. Therefore, only a portion of 

the inhibitor is available to continue inhibition at much lower levels than initially added to the 

polymerization medium. Thus, soluble silicate levels continue to decrease because eventually there 

is not a suffi cient amount of inhibitors to perform the inhibition. Inhibitor entrapment is directly 
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proportional to cationic charge density. For example, PEI (polyethyleneimine), a branched cationic 

polymer with high positive charge density, creates composite precipitates with colloidal silica rap-

idly [17f]. It is now certain that effective silica scale inhibition is dependent on the cationic charge 

on the polymer backbone (in an as of yet insuffi ciently quantifi ed fashion). It has been demonstrated 

that certain cationic polymers are trapped in the colloidal silica matrix by FT-IR spectroscopy and 

elemental analyses [17c].

10.5 MECHANISM OF SILICA SCALE INHIBITION

Amorphous silica formation is governed by several important equilibria. Some of these are given 

in Figure 10.9.

As mentioned above, silica deposition results from silicic acid self condensation. This reaction 

is fi rst order and is catalyzed by OH− in the pH range of 5–10. Reports have shown that the reaction 

yielding a silicic acid dimer is kinetically slow in contrast to the reactions giving a trimer, tetramer, 

pentamer, etc., which are very fast [19]. All these equilibria are sensitive to pH and tend to be accel-

erated by metal ions that form hydroxides, e.g., Fe2+/3+, Mg2+, or Al3+.

Polymerization of silicic acid is believed to occur through a SN2-like mechanism involving 

a deprotonated silicic acid monoanion ( (HO)3Si-O−) and the Si center of silicic acid, Si(OH)4. 

Inhibition of this step should be critical in the inhibition of silica scale formation. Some reports 

indicate that orthosilicates hydrolyze more rapidly than other silicate species such as disilicates, 

chain silicates, cross-linked oligomers, and polymers, suggesting that bridging oxygens are much 

more resistant to attack than non-bridging oxygens. Above a pH of 2, this mechanism involves 

polymerization with condensation, catalyzed by OH−.

One can envision electrostatic interactions between a cationic polymeric inhibitor and 

monodeprotonated silicic acid. These interactions stabilize soluble silicate and prohibit the con-

densation reaction. Alternatively, a cationic polymer whose positive charge is primarily based on 

protonated amine moieties can stabilize silicic acid molecules and/or silicate ions by hydrogen 

bonds. Most likely, a combination of the above interactions occur simultaneously for polymeric 

inhibitors with protonated amine groups, whereas electrostatic interactions are responsible for 

the stabilizing effect for polymers that have no N–H moieties, but possess +− 4NR  groups (e.g., 

PAMALAM).

To prove that cationic charges on the polymer backbone are responsible for the silicic acid 

stabilizing effect, experiments were performed in which a second, anionic polymer was added 

with the cationic polymeric inhibitor. If this second anionic polymer is added in suffi cient 

excess to “blanket” the positive charge of the cationic inhibitor, inhibition performance dete-

riorates to virtually none [20]. This was proven for dendrimers PAMAM-1 and PAMAM-2 

and PCH. The characteristics of the anionic polymer play a profound role in this “inhibition of 

inhibition” event.

The precise mechanism of silica formation is only partially understood. As a consequence, the 

exact mechanism of silica scale inhibition is not fully delineated. However, it is now certain that 

any interference with the condensation reaction could lead to silica scale growth inhibition. A rel-

evant example is silica inhibition by orthoborate, which reacts 

with silicate ions to form borosilicates. These products are more 

soluble in water than are silica/metal silicates [21].

10.6 MAGNESIUM SILICATE IN GEOCHEMISTRY

Examination of the composition of the nine rock-forming miner-

als reveals that they all belong to the silicate group of minerals. 

The basic building unit of silicate minerals is the −4
4SiO  com-

plex ion, the silicon tetrahedron. Oxygen and silicon are the most 

Si(OH)4 [SiO(OH)3]– + H+

Si(OH)4 [SiO2(OH)2]2– + 2H+

2Si(OH)4 Si2O(OH)6 + H2O

[Si2O2(OH)5]– + H2O + H+2Si(OH)4

[Si2O3(OH)4]2– + H2O + 2H+2Si(OH)4

FIGURE 10.9 Silicic acid equilibria 

that occur in aqueous systems.
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abundant elements in the crust and mantle, and they form the strongly coordinating species −4
4SiO  

over a wide range of conditions. This species is even stable in silicate melts, and because more than 

90% of the Earth’s crust is made of these two elements (more than 70% by weight), it is easy to under-

stand why practically all the minerals in the crust (and mantle) are composed of silicate tetrahedra with 

a variety of other elements included among them.

Although the nine rock-forming minerals were mentioned above, they are really families of min-

erals with the same structural styles (in fact three of the rock-forming minerals, albite, orthoclase, 

and plagioclase are all from the feldspar family). In each of these “families” there is a basic frame-

work/geometric arrangement of silicate tetrahedra, and the difference between “family members” is 

primarily in the types and abundances of other chemical elements that participate in the structure. 

Table 10.1 shows the most common magnesium silicate minerals.

10.7 WATER-FORMED “MAGNESIUM SILICATE” DEPOSITS

The term “magnesium silicate” is widely recognized in the water treatment industry. However, its 

defi nition differs from that in geology. In general, a deposit that contains both magnesium and silicon 

is called “magnesium silicate.” In more harsh environments, such as in geothermal applications, the 

effect of high temperature favors the formation of geologically recognized magnesium silicates.

Precipitation of magnesium silicate can cause problems in a number of water treatment applica-

tions from truck radiators to geothermal wells and plants. Figure 10.10 shows a heat exchanger tube 

bundle fouled with magnesium silicate. The magnesium silicate system is highly pH-dependent. 

Below pH 7, there is essentially no chance of precipitation, because the silica exists in an unreac-

tive, non-ionized form. Above pH 9, magnesium silicate is very likely to form because silica forms 

reactive silicate ions. Furthermore, the temperature is extremely important. Precipitation begins at 

a lower pH if the temperature is suffi ciently high.

TABLE 10.1
Names and Compositions of 
the Most Common Magnesium 
Silicate Minerals

Magnesium Silicates Molecular Formula

Chrysotile Mg3Si2O5(OH)4

Clinoenstatite Mg3Si2O6

Enstatite Mg2Si2O6

Forsterite/chrysolite Mg2SiO4

Magnesiosilica MgOSiO2

Olivine Mg1.6Fe2+(SiO4)

Orthochrysotile Mg3Si2O5(OH)4

Parachrysotile/amianthus Mg3Si2O5(OH)4

Pyrope Mg3Al2(SiO4)3

Ringwoodite Mg2SiO4

Saponite Ca0.1Na0.1Mg2.25Fe
2+

0.75 

Si3AlO10(OH)2
.4H2O

Sepiolite Mg4Si6O15(OH)2
.6H2O

Serpentine/clinochrysotile Mg3Si2O5(OH)4

Stevensite Ca0.15Na0.33Mg2.8Fe
2+

0.2 

Si4O10(OH)2
.4H2O

Talc Mg3Si4O10(OH)2

Wadsleyite Mg1.5Fe
2+

0.05SiO4
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Scaling of magnesium silicates has been a problem in some of the Icelandic district heating 

systems [22]. This kind of scaling is not encountered in heating systems utilizing geothermal water 

directly but occurs by heating and deaerating fresh water. Two of the plants have heat exchangers to 

heat fresh water. The water in those systems is also discarded after a single use and not recirculated 

in the heating system. Scaling of a similar type occurred in a few other systems due to the mixing 

of cold water with the geothermal water. Magnesium silicates have low solubility in warm waters at 

a high pH level. The heating of groundwater depletes the magnesium concentration of geothermal 

waters mostly below 0.1 mg/kg. Magnesium silicate is amorphous based on x-ray diffraction (XRD) 

experiments whatever structure and its resembles that of chrysotile. It was also found that the 

Mg:Si ratio is close to 1 with small variations. An FT-IR spectrum of the above magnesium silicate 

deposits is shown in Figure 10.11.

The magnesium silicate sepiolite will precipitate from sea water at low temperatures (down to 

25°C), as the dissolved silica concentration is increased. Increased temperature and high pH levels 

will enhance the rate of precipitation. The magnesium silicate talc will form easily in hydrothermal 

experiments and is frequently formed outside its stability fi eld. Several other magnesium silicates 

such as stevensite, saponite, and chrysotile are known to be formed hydrothermally at relatively 

low temperatures. The heating of fresh water also initiates precipitation and it is well known 

that magnesium is one of the major components in “boilerstone.” The major factors controlling the 

FIGURE 10.10 A magnesium silicate fouled heat exchanger tube bundle.
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FIGURE 10.11 The FT-IR spectrum of a magnesium silicate deposit from Icelandic water used for heating 

applications. (Reproduced from Kristmanndóttir H. et al., Geothermics, 18, 191, 1989. With permission.)
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degree of supersaturation are boiling temperature and pH, which in turn is mainly dependent on the 

deaeration process. Supersaturation is in all cases greater for talc than for chrysotile [23].

Co-precipitation of magnesium hydroxide, Mg(OH)2, and colloidal silica has also been observed 

[21]. One theory proposes that the formation of Mg(OH)2 occurs fi rst, and then Mg(OH)2 subse-

quently reacts with monomeric silicate and/or polymeric silica to form magnesium silicate [24]. 

Ca2+ and Mg2+ salts were found to catalyze the silica polymerization reaction [25]. Higher concen-

trations of total hardness lead to a faster drop in dissolved silica in solution. In batch runs, Mg2+ was 

found to affect silica concentrations more than Ca2+. For example, runs with a given hardness level 

but with lower ratios of Ca:Mg caused a faster decline in dissolved silica.

Magnesium silicate seems to be a “true” compound according to Young et al. [26]. According 

to their results, fairly consistent amorphous precipitate was obtained. The stoichiometric ratio of 

silicon to magnesium was found to be 1:1. This is the same whether the mother liquor contained a 

1:2 or 2:1 mole ratio of silica to magnesium and whether the precipitation took place at room tem-

perature or 75°C. Some comments on the possible mechanism of formation are warranted. If mag-

nesium hydroxide precipitated out and silica simply absorbed, there should be little effect of silica 

on the precipitation point. By the same reasoning, the “opposite” mechanism of silica precipitation 

followed by magnesium absorption should be independent of magnesium concentration. In fact, 

increasing or decreasing silica concentration has an effect essentially equal to similar increases or 

decreases in magnesium concentration. The precipitate was found to contain signifi cant amounts 

of adventitious water, presumably in the pores of the gel. This magnesium silicate precipitate dis-

solved in acid. Alternatively, ethylenediamine tetraacetic acid chelated the magnesium from the 

precipitate, leaving a loose fl ock of virtually pure colloidal silica, which did not redissolve in acid. 

It can be assumed that the magnesium silicate initially forms a loose, open gel structure with numer-

ous hydroxide bridges. An alternative mechanism of magnesium silicate formation was proposed. 

According to this proposal, formation of magnesium silicate seems to be a two-step process. Under 

relatively high pH conditions, magnesium hydroxide is precipitated. Because magnesium hydroxide 

is inversely soluble with respect to temperature, the precipitation can take place near the surface 

of the heat transfer tubes and the maximum exchanger tube wall temperature should be ∼80°C. 

Temperature has a greater infl uence upon the deposition than any of the variables. It was reported 

that a hydroxylated magnesium silicate forms in seawater in which SiO2 concentration exceeds 

26 ppm at pH 8.1 and clay minerals are found (kaolinite, glauconite, and montmorillonite) [27].

10.8 THE ROLE OF Mg2+ LEVEL, TEMPERATURE, pH, AND SUPERSATURATION

Magnesium silicate exhibits “inverse solubility” properties; its solubility decreases as the tempera-

ture increases [22,28]. The effect of pH is also profound. At pH regions <8, magnesium is rarely 

observed in deposits. This does not imply the absence of Si-containing scale deposits, it merely 

means that magnesium is not incorporated in the deposit structure. Figure 10.12 demonstrates that 

at pH > 8.5, analyses of several deposits showed that the Mg content increased with pH.

Several experiments performed in our laboratories demonstrated that Mg2+ ions actually act as a 

catalyst in silicic acid condensation reaction. In these experiments, the effect of Mg2+ level and pH 

were studied by following soluble levels of silicic acid. Figure 10.13 clearly shows that at pH 8, Mg2+ 

up to 100 ppm has virtually no effect in the silicic acid condensation reaction.

When pH is increased to 9.0 (Figure 10.14), the catalytic effects of Mg2+ start appearing, but Mg2+ 

dosage seems to have no measurable effect.

An increase in the operational pH level to 9.5 has a dramatic change on the catalytic effects of 

Mg2+. Figure 10.15 demonstrates this dramatic effect. Another signifi cant conclusion derived from 

Figure 10.15 is that at pH 9.5, the level of Mg2+ is now measurable and important. There seems to be 

a rapid decrease in soluble silicic acid levels as Mg2+ concentrations increase. At a level of 100 ppm 

Mg2+, soluble silicic acid levels drop ∼100 ppm lower than the “control.” This is convincing evidence 

that Mg2+ is an effective catalyst of silicic acid polymerization at pH regions > 9.0.
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10.9 OTHER METAL SILICATE SCALES

10.9.1 IRON SILICATE

Qualitative evidence for the interaction of silicic acid with metal ions in aqueous solutions was 

observed as early as 1933 by Mattson [29], who suggested the existence of simple Al-silicate 

complexes in order to explain his soil experiments. This was followed by Hazel, who employed 

titrimetric procedures to study metal–silicate interactions with metals such as Al, Fe, and Cr [30]. 

No quantitative relationships were established for any of these interactions until the work of Weber 

and Stumm delineated the formation of a Fe(III)-silicate complex [31]:
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FIGURE 10.12 Magnesium content dependence on operational pH in a magnesium silicate scale deposit from 

pilot cooling tower tests. (Reproduced from Demadis, K.D. et al., Desalination, 179, 281, 2005. With permission.)
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 + + ++ + → +3 2
4 2 3 3Fe Si(OH) H O [FeSiO(OH) ] H O  (10.1)

The experimental pH covered was <3.5, however it is expected that similar interactions take place 

in natural water pH. They found that the stability constant for the Fe(III)-silicate complex is 1.8 × 109. 

Increased silica concentrations accelerated Fe(II) to Fe(III) oxidation in pH ranges 6.6–7.1 [32]. 

Fe(III) has a higher propensity for silicate or colloidal silica than Fe(II). This may create iron (III) 

silicate precipitates. Chan et al. studied the effect of Fe3+ on silica fouling of a pilot heat exchanger 

[33]. Experiments were performed at 125°C–165°C, 1.58 MPa and under turbulent conditions. It was 

shown that the addition of a few ppm Fe3+ into a silica solution was suffi cient to induce coagulation 
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FIGURE 10.14 The effect of Mg level on silica polymerization at pH 9.0.
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and deposition of silica particles. These in turn caused a signifi cant increase in fouling rates. Gallup 

studied iron silicate formation and its inhibition in geothermal systems [34].

10.9.2 ALUMINUM SILICATE

Siliceous scales deposited from geothermal brines often contain co-deposited Fe and Al. Fe and 

Al-rich amorphous silica scales have been reported to form from geothermal brines in Iceland; 

Japan; Greece; Djibouti; Salton Sea, California; Coso Hot Springs, California; and Dixie Valley, 

Nevada [35]. The concentrations of Al and SiO2 in brines depositing scale range from 0.1 to 1 and 

600 to 900 ppm, respectively. The scales consist primarily of Al-rich SiO2. Al/Si molar ratios typi-

cally range from 0.1 to 0.2. Traces of Fe, alkalis, and alkaline earth metals were also found. Based on 

XRD, NMR, and FT-IR measurements, it was concluded that Al is four-coordinate in an opal-like 

framework [36]. Although Al retards silicic acid polymerization, in the near-neutral pH range [37], 

it is observed to concentrate in siliceous geothermal scales [38].

Amorphous aluminum-rich silica has been identifi ed as a primary scale constituent depos-

ited from certain geothermal brines. This scale is a non-stoichiometric compound exhibiting an 

empirical formula approaching Al2O3·(10–20)SiO2, and consists of aluminum incorporated in 

an amorphous silica matrix. Spectroscopic studies indicate that aluminum is coordinated with 

silica in a three-dimensional array of corner-sharing tetrahedra. Aluminum in scale appears 

to derive from brine as a result of a reaction with silicic acid oligomers. There is no evidence 

to suggest that the scale is a simple mixture of amorphous alumina and silica, or a mixture of 

molecularly deposited silica and aluminosilicate minerals transported in brine from the res-

ervoir. The Al-rich scale tends to deposit from brine at a higher temperature than that of pure 

amorphous silica. In laboratory experiments, aluminum reacts with supersaturated silicic acid 

solutions over the pH range 5–9 to precipitate aluminum and silica. The concentrations of 

aluminum and silica in the mixtures reach a minimum at near-neutral pH. Laboratory experi-

ments indicate that aluminum-silica precipitation reactions are inhibited below pH 5 and 

above pH 9. A schematic presentation of the structural details of aluminum silicate is shown 

in Figure 10.16.

Amorphous aluminosilicate is one of the essential components in geochemical processes, 

such as weathering [39] and adsorption phenomena [40]. In natural systems, amorphous alumi-

nosilicates are formed mainly by the co-precipitation of silicic acid and aluminum hydroxide 

[41]. There is a strong pH-dependent reaction between silica sols and Al3+ [42]. For example, 

1 ppm of Al3+ is suffi cient to reduce 45 ppm SiO2 in the sol to 5 ppm in the pH range 4–5. 

Soluble SiO2 requires considerably larger ratios of Al3+ to precipitate the silica at an optimum 

pH of 8–9 [43].
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10.9.3 CALCIUM SILICATE

Calcium silicate hydrate (CSH) is the major product of Portland cement hydration, where it forms as 

an amorphous phase of variable composition. CSH is thought to form a layered structure related to 

tobermorite and jennite [44]. FT-IR of CSH is very similar to that of silica [45].

10.10 EFFECT OF OTHER CATIONS

Studies on the effects of Na+ and K+ on silica fouling of heat exchangers under turbulent fl ow con-

ditions were carried out. It was found that the silica fouling rate in the presence of Na+ is greater 

than that when K+ is present [46]. The effect of cations on decreasing silica solubility follows the 

order Mg2+ > Ca2+ > Li+ > Na+ > K+ [47,48]. At pH 7, Cu2+ ions are absorbed on a SiO2 surface as 

polymeric hydroxide species [49]. The structure of these species is similar to that of the bulk amor-

phous Cu(OH)2. The amorphous state of the supported Cu(OH)2 is caused by a small size (11 Å) of 

the surface particles. In contrast, the overstoichiometric water molecules seem to have an effect of 

making bulk Cu(OH)2 more amorphous.

10.11  MAGNESIUM HYDROXIDE AND ITS ROLE IN 
MAGNESIUM SILICATE FORMATION

Our discussion on metal silicates also involves Mg(OH)2. This is because its role has been 

invoked before in the formation and growth of magnesium silicate [50]. The region of Mg(OH)2 

insolubility is from pH 9.2 upward [51]. Aspects of magnesium hydroxide chemistry have been 

utilized in removing silica from process water streams. Other than anion resins, Mg2+ has been 

the most commonly used reagent to remove silica from water [52]. It was shown that for a satu-

rated amorphous SiO2 solution with about 140 ppm silica content, with an equivalent amount 

of MgCl2 added, the maximum precipitation is at pH 11–11.5. About 35 ppm of SiO2 remains 

in the solution [53]. Another report also showed that the addition of 100 ppm of “active” MgO 

can reduce silica content at 93°C from 22 to 1 ppm [54]. However, at 30°C the reduction is 

only 16 ppm. A common method of water “softening” is the hot-lime process in which lime (or 

dolomitic lime) and soda ash are added to water preheated with steam. Such a system is often 

used to remove silica. Temperature has a profound effect on silica removal [55]. A practical 

set of curves from Nordell shows the relation between silica present and magnesium added for 

removal. These curves include a 15% safety factor. Although this method seems to be effec-

tive, there are some disadvantages: (a) high temps are required for effective silica removal, 

(b) circulation of sludge and cold infl uent is required for maximum reaction with silica, and (c) 

high cost.

In the desalination of brackish water, silica is one of the major foulants that forms on the reverse 

osmosis membranes and limits the water recovery. In addition, it is a very adherent scale and once it 

forms, it is very diffi cult to clean and cleaning may damage the membrane. There are also compli-

cating factors affecting silica fouling, such as the presence of cations (e.g., Ca, Mg, etc.) that usually 

promote silica polymerization. Pretreatment is used as a measure to reduce silica levels in the feed and 

hence mitigate silica fouling. Silica removal was also tested in the presence of sodium aluminate, lime, 

and soda ash in laboratory tests using fi eld waters [56].

10.12 EFFECT OF ADDITIVES ON METAL SILICATE SCALE CONTROL

Since waterborne metal silicates are amorphous “binary systems,” the use of “traditional” thresh-

old scale inhibitors is expected to be ineffective. However, control strategies that are based on 

either eliminating the metal cation or stabilizing silicic acid in its soluble form have a realistic 
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chance of being successful. Laboratory studies show that sequestering agents such as citric, 

acetic, and EDTA acids inhibit aluminum silicate scale formation in geothermal water systems 

[35]. Aluminum silicate scale deposition may be controlled at these pH extremes with precaution 

against corrosion and by-product scale formation. Low concentrations of complexing/seques-

tering agents with a carboxylate functionality maintain aluminum and silica in solution. These 

results imply that aluminum silicate scaling may be controlled by the treatment of brine with 

agents that form complexes with aluminum. Bulk silica precipitation can be successfully inhib-

ited by brine pH adjustment alone. When residual aluminum-rich, amorphous silica scaling is to 

be prevented, the treatment of brines with low dosages of aluminum complexing agents may be 

necessary. Combinations of complexing agents and brine pH adjustment or the use of acidic com-

plexing agents may prove useful in controlling amorphous aluminum-rich silica scale deposition 

from geothermal brines.

Magnesium silicate scale control was pursued in our laboratories by the use of EDTA as a Mg 

sequestering agent. Figure 10.17 shows that the addition of EDTA at a ppm level equal to that of 

Mg has no effect on soluble silicic acid. These experiments were performed by monitoring soluble 

silicic acid levels (starting concentration of silicic acid was 500 ppm as SiO2). EDTA was proven to 

be ineffective at the dosages shown. Soluble silicic acid levels were the same as those without the 

presence of EDTA.

When the operational pH was increased to 9.0, the same situation was observed. As illustrated 

in Figure 10.18, no increase in soluble silicic acid levels is observed and these silicic acid values are 

the same as those without EDTA present.

When the pH was increased to 9.5, a profound, dosage-dependent effect of EDTA was observed 

(Figure 10.19). All three EDTA dosages (20, 40, and 60 ppm) caused soluble silicic acid above the 

control. An interesting observation warrants further discussion. The dosage dependence seems to 

have an inverse relationship. The higher the Mg/EDTA combination dosage, the lower soluble silica 

is observed. Therefore, the most effective Mg/EDTA combination for maximum soluble silica is 

20/20 ppm. A possible explanation for this inverse effect may be that at increased Mg/EDTA levels 

(40/40 and 60/60 ppm), the possible precipitation of a Mg-EDTA complex may be occurring. EDTA 

is well known to be an effective chelator of Mg at high pH regions. A Mg-EDTA complex has been 

structurally characterized [57].
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10.13  PRACTICAL GUIDELINES FOR CONTROL 
OF MAGNESIUM SILICATE SCALE

Previously, rough guidelines (summarized in Table 10.2) were based on multiplying the magnesium 

hardness with the silica concentration. If the product was below 20,000, the water was considered 

stable. A more advanced rule of thumb was to set the maximum at 40,000 when the pH was below 

7.5. Even this was only an approximation, and did not account for the temperature effects. The mag-

nesium silicate system is quite complicated. Several solid compounds of different stoichiometries 

and hydration states are well known. Magnesium also forms stable complexes with the (OH)3SiO− 

anion as well as the hydroxide ion. This is an addition to the already complicated chemistry of silica 
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alone. All these factors infl uence the precipitation of magnesium silicate. Guidelines for the proper 

operation of the cooling tower under high concentrations of magnesium and silica have been set 

(see Figure 10.20).

10.14 “METAL SILICATES” IN BIOLOGICAL SYSTEMS

Calcium and iron are found in mineral phases and biopolymers next to silica within biomineral-

ized structures. Silicon can affect the mineralization of both iron oxide and calcium phosphate 

phases by solution or solid-state interactions. Silicon also appears to have a direct relationship 

TABLE 10.2
Rough Guidelines for Magnesium Silicate Control

pH Region Mga × a
2SiO a

2SiO Comments

<7.5 Mg × SiO2 should be 

below 40,000 ppm2

Reactive SiO2 should 

be below ∼200 ppm

Magnesium silicate usually 

does not precipitate

>7.5–8.5 Mg × SiO2 should be 

below 12,000 ppm2

Reactive SiO2 should 

be below ∼150 ppm

Onset of magnesium silicate 

precipitation possible

>8.5 Mg × SiO2 should be 

below 3,000 ppm2

Reactive SiO2 should 

be below ∼100 ppm
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with aluminum in mineralized pathological deposits. In summary, it can be clearly seen that 

“silicon”–metal interactions not only occur, but they are an important part of biological pro-

cesses. Signifi cant studies have been published on the molecular nature of the silicon–metal inter-

actions and in particular on which species (silicon-containing and metal-containing) are involved 

in such processes [58]. Results indicated that Al3+ and orthosilicic acid/silica are able to interact 

under conditions relevant to biological systems. The inclusion of aluminum in silica, even at the 

highest Si:Al ratio, also demonstrates the strong affi nity between these elements. This is because 

silicic acid is able to compete successfully with other strong ligands for the metal cation. In a 

different paper, Perry et al. showed that the use of complexing/sequestering agents for aluminum 

to prevent the formation of the aluminum-rich silica scale may not be as feasible an option as 

originally thought [59].

It was reported that the complex formed between aluminum and oligomeric silica has a log 

Keff of 11.70. This affi nity for aluminum is at least 1 million times greater than that for mono-

meric silica). Another important observation is that aluminum stabilizes silica oligomers for 

several days under conditions in which depolymerization would otherwise be complete within 

24 h. In contrast, oligomeric silica diluted in the absence of aluminum, fully deoligomerized 

by 24 h, and lost its aluminum binding capacity. Under physiological conditions, this solu-

ble oligomeric silica competes effectively for aluminum with the endogenous chelator citrate. 

Clearly, the oligomeric-silica/aluminum interaction is of high affi nity, and work demonstrating 

the biological activity of soluble silica should carefully distinguish between monomeric and 

oligomeric forms.

10.15 EPILOGUE

Silica polymerization is governed largely by pH. Unfortunately, silica is a recalcitrant foulant that is 

not easily mitigated by simple operational pH adjustments. For example, CaCO3 scale can virtually 

be eliminated if a cooling tower system is operated at a lower pH. With water containing a high 

concentration of silica, operation at a higher pH generates the problem of magnesium silicate scale. 

Lowering the pH (by feeding acid) does not eliminate the problem, it just shifts the “high risk” from 

magnesium silicate to silica. In contrast to “traditional” mineral scales such as CaCO3, threshold 

inhibitors (usually phosphonates) are not active for silica scale [60].

An added requirement that is recently gaining a lot of attention is that chemical additives for 

scale inhibition must be nontoxic, environmentally friendly, and biodegradable. This approach is 

gaining more governmental and public approval, but is certainly a challenge for chemists and water 

technologies that are active in the fi eld of chemical water treatment. In the quest for the discovery, 

application, and commercialization of new silica and metal silicate scale inhibitors, Nature may 

play an important role in revealing how high levels of silicic acid are stabilized within the diatom. 

New information may lead to novel synthetic polymers in a biomimetic approach [61]. Until then, 

research in this fi eld will be active.
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