Metal Based Self-Assembly

L. F. Lindoy
University of Sydney
Reference:
Self-Assembly in Supramolecular Systems

A Monograph in the series: Supramolecular Chemistry, Ed. J. F. Stoddart

http://www.rsc.org/is/books/selfassembly.htm
1987 Nobel Prize to
Donald J. Cram
Jean-Marie Lehn
Charles J. Pedersen

For their development of the field of
supramolecular chemistry
Supramolecular systems are still simple relative to DNA, viruses etc. They do not yet match biological systems in subtlety or function – therein lies the challenge!

Tobacco mosaic virus: 2130 protein units self-assemble around a RNA strand via non-covalent interactions
Supramolecular Chemistry

The designed chemistry of the intermolecular bond’

J.-M. Lehn

- Interdisciplinary

- Weaker non-covalent interactions including hydrogen bonding – same forces as nature employs

- Can also include M-donor bonds (to give metallo-supramolecular chemistry)
• Now many systems, size range: ~ 1 – 1000 nanometres

• Mimics Nature’s way of doing things – but does not necessarily copy nature

• Complementarity, recognition, self-assembly, preorganisation and (even) self-replication are part of the language

• Self assembly – convergent synthesis – reversible → thermodynamic product but sometimes combined with traditional covalent synthesis
Some Preliminaries
Non-Covalent Interactions

• Hydrogen bonding

• $\pi-\pi$ Stacking interactions

• Electrostatic interactions (ion-ion, ion-dipole and dipole-dipole)

• Dispersion and induction forces (van der Waals forces)

• Hydrophobic/solvatophobic interactions
Hydrogen Bonding

- Hydrogen bonding is the most directional of all the intermolecular interactions and is also the most widely used interaction in forming supramolecular structures.
- Hydrogen bond formation covers a wide variety of interaction types.

Classical hydrogen bonds

\[\text{Simple} \]
\[\text{Bifurcated} \]
\[\text{Trifurcated} \]

- Bridging
- Cyclic dimer
- Cyclic

\[\pi\text{-Facial interactions} \]
Hydrogen Bonding

An X–H···A interaction is called a 'hydrogen bond', if (i) it constitutes a local bond, and (ii) X-H acts as proton donor to A. (Due to Steiner)

The degree of directionality in the resulting hydrogen bond is quite dependent on the polarity of the donor.

The strength of such bonds can range from very weak to substantial, typically falling in the approximate range of 3 - 40 kcal mol\(^{-1}\).
Additivity of Weak Interactions such as H-Bonds

- A number of hydrogen bonds may act in unison resulting in, overall, strong forces operating between the individual molecular components.

Complementary A-T and G-C Base Pairs in DNA
π-π Stacking

Bonding model based on the concept of an idealised π-system that consists of a positively charged σ framework (+1e) sandwiched between two regions of π-electron density (2 x -½e).

Although van der Waals forces also contribute to the interaction energy, it is the electrostatic π-σ interactions that dictate the preferred geometry to be adopted.

Complementarity

• Increased appreciation of the latent steric and electronic information inherent in the wide diversity of molecular building blocks that are either already available or that are capable of being synthesized.

• The self-assembly process requires that molecular recognition between the assembling components initially occurs and this in turn implies that such components be designed such that steric and electronic complementarity occurs between their respective binding sites.
Molecular Complementarity

General

Specific

Electronic

- Includes: van der Waals
- H-Bonding
- Dipole Interactions
- Aromatic Stacking

Structural

- Includes: Size
- Shape (conformation)
- Functional groups present
- Functional group orientation
Molecular Recognition

• Steric and electronic complementarity

• Allosteric behaviour possible – *i.e.* cooperativity

• Chirality a ‘second order’ source of stored information – recognition based on ‘handedness’
Molecular and ionic self-assembly is ubiquitous

Controlled molecular and ionic assembly is not
Self-Assembly

- Self-assembly processes involving weak non-covalent interactions have now been reported to generate an impressive range of different supramolecular architectures.

- Examples include simple (1:1) host-guest systems, molecular tweezers, zippers, boxes, tubes, grids, capsules, rotaxanes, catenanes, helices, knots and large cyclic assemblies.
Properties of Supramolecular Assemblies

- Supramolecular assemblies have been constructed that exhibit novel properties which include unusual redox and/or electron transfer properties, photoactivity, conductivity as well as non-linear optical behaviour.

- Interest in such behaviour for application in new supramolecular 'devices' continues to remained a further motivation for the interest in the synthesis of new assemblies of the above type.
Capacity for Error Correction

• An important outcome of employing weak non-covalent interactions/metal donor bonds for the construction of supramolecular assemblies is that their formation is often readily *reversible*, since the final assembly remains in thermodynamic equilibrium with its components.

• As a consequence, supramolecular systems of this type have an inherent capacity for assembly *'error correction'* that is not normally available to systems that are fully covalently bound.
Preorganisation Effect

• This concept, first proposed by Donald Cram, can help rationalize the strength of binding between the components in particular supramolecular systems.

• In essence, Cram proposed that the more closely the binding sites of a host molecule are structurally preorganized for binding to a guest, the greater will be the binding strength between host and guest in the resulting assembled species.

• Preorganisation results in a minimum change in degrees of conformational freedom – entropic advantage

\[
\text{predisposes} \quad \text{promotes}
\]

Preorganisation \rightarrow \text{recognition} \rightarrow \text{self assembly}
Entropic Considerations

Entropic Considerations: Predicts tendency to form *discrete* over polymeric systems

Less favourable: 100 components \rightarrow 1 polymer
More favourable: 3 components \rightarrow 1 supramolecular assembly

Less loss of disorder occurs in the latter case on forming the product. However, it is stressed that this is only one of several contributions that will operate for a given system.
Metal Directed Self-Assembly
Metal Template Effect
Pre-1960 Synthetic macrocyclic chemistry mainly that of phthalocyanine and derivatives. Synthesized via metal template procedures.

Metal template behaviour has been known for many years.
THE CURTIS MACROCYCLES (1960)

• Curtis investigated the reaction between dry acetone and [Ni(ethylenediamine)$_3$]$^{2+}$. Obtained a yellow crystalline product. Initially formulated as the Schiff base Ni(II) complex of type $[\text{NiL}_2]^{2+}$.

• Extreme stability did not fit this formulation.
• Correct formulation is a mixture of the isomeric complexes:
THE CLASSICAL MACROCYCLES – TYPICAL SYNTHESSES

Macrocycle Synthesis

\[
\begin{array}{c}
\text{Direct} \\
\text{In situ}
\end{array}
\]

Conventional Organic reactions
- NOT dependent on metal ion

Reaction in presence of metal ion which acts as a template

Direct Syntheses

• Frequently performed under high dilution – favours self-condensation over linear polymerization.

• Special procedures developed for such reactions – slow addition of reagents to large reaction volumes using motor-driven burettes.
Template Syntheses:

- Large number in macrocyclic literature

- Reactions often complicated multistep procedures – difficult to define precise role of metal.

- Very little research into specific reactions – much ‘witchcraft’!

An aim of both template and direct syntheses is to maximize yields by choosing strategies which inhibit the formation of competing linear polymerization reactions.
Two template effects have been delineated (Busch):

The thermodynamic template effect
The metal ion sequesters the cyclic product from an equilibrium mixture (for example, between products and reactants). Formation of the macrocycle is promoted as its metal complex.

The kinetic template effect
The metal ion directs the steric course of a condensation such that formation of the required cyclic product is facilitated.
A Recent Template Synthesis of a Molecular Cage

Reference:
CPK Model of the Tripyridyl Cage Coordinated to an Octahedral Metal
Final Steps of the Direct Synthesis

Direct synthesis is multi-step from small precursors and extremely painful!

Yield ~2% from dialdehyde

R = tert-butyl
Alternative metal template synthesis of the cage via reductive amination

Initial synthesis involving Fe(II) based on the well known stability of the classical low-spin (d^6) complex [Fe(bipy)_3]^{2+}

For M = Fe; yield = 70%

Kinetic Template Effect
Space filling view of the $[\text{Ni(cage)}]^{2+}$ X-ray structure

The single central metal directs a triple helical twist that extends ~ 22 Å along the axial length of the system.

Cu cage has a similar structure.
(An Aside)

The Macrocyclic Effect
The Macrocyclic Effect

• Frequently macrocyclic ligands give rise to metal complexes that are more **kinetically** and **thermodynamically** stable that their open-chain analogues.

• Known as the **macrocyclic effect**. Kinetic stability refers to the rate at which demetallation of the complex occurs.

• Additional stability of the macrocyclic system is usually considerably **greater** than would occur for the presence of an additional chelate ring.

• The origins of the effect have engendered much debate for individual systems. Not helped by the observation that the effect is very **variable** from system to system.
Stability Constants for Cu(II) Complexes

Macrocyclic effect is reflected by a favourable entropic term \((T\Delta S = 17.6 \text{ kJ/mol})\) as well as by a lessor contribution from the enthalpic term \((-\Delta H = 8.4 \text{ kJ/mol})\)

Values are for water at 25°

The Macrocyclic Effect (cont.)

Origins of the effect:

• In the **simpliest** situation, one may compare the formation of an open-chain ligand complex and its cyclic analogue:

\[M + L \rightarrow ML (k_f) \]

• For both ligand types, the above process should be facile, although formation of the cyclic complex is expected to be somewhat **slower**.

• However, the **dissociation** of the metal from the macrocyclic complex (consider to be first order) is likely to be much **slower** than for the open-chain analogue which can unrap one bond at a time, for example, in a series of SN\(_1\) steps:

\[ML \rightarrow M + L (k_d) \]
Macrocyclic Effect (cont.)

At equilibrium: $M + L \xrightleftharpoons[k_f]{k_d} ML \quad K = \frac{k_f}{k_d}$

Hence for the macrocyclic complex case k_d will be smaller and K will be enhanced.
Comparative Thermodynamic Parameters

The entropy term associated with the macrocyclic effect tends to be favourable while the enthalpy term can be quite variable (and either favourable or unfavourable).

<table>
<thead>
<tr>
<th>L_{oc}/L_{mac}</th>
<th>$-\Delta G$ (kJ mol$^{-1}$)</th>
<th>ΔH (kJ mol$^{-1}$)</th>
<th>$T\Delta S$ (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1/L2</td>
<td>2.43</td>
<td>5.1</td>
<td>7.4</td>
</tr>
<tr>
<td>L3/L4</td>
<td>21.05</td>
<td>5.3</td>
<td>26.4</td>
</tr>
<tr>
<td>L5/L6</td>
<td>15.69</td>
<td>3.5</td>
<td>19.2</td>
</tr>
<tr>
<td>L7/L8</td>
<td>33.67</td>
<td>-20.5</td>
<td>13.2</td>
</tr>
</tbody>
</table>
Metallo-Catenanes

Metal-ion directed formation of mechanical bonds
Synthesis of a [2]-catenane incorporating 2,9-substituted 1,10-phenanthroline ring derivatives coordinated to Cu(I)

- Product is deep red.
- Cu(I) acts as a template.
- High dilution, 27% yield.
- Need CN⁻ to remove Cu(I) – slow kinetics – shows a substantial macrocyclic effect.
- Can then add Ni(II); Ni(I) is stabilized on reduction as prefers tetrahedral coordination
- Reaction is a marriage of metal template and conventional synthetic procedures

Why chose copper(I)?

- Copper(I) has a d^{10} electronic configuration - no inherent steric dictates.
- Univalent – favours 4-coordinate (tetrahedral) coordination over higher coordination numbers.
- No crystal field effects – relatively kinetically labile - error correction and metal removal/exchange from final product both possible (despite a significant macrocyclic effect).
- Diamagnetic – can readily follow assembly processes by 1H NMR.
- $[\text{Cu(phen)}_2]^+$ is a ‘classical’ complex known since 1933 – its coordination chemistry well documented.
- It is a redox active - Cu(I)/Cu(II)/Cu(III) all commonly generated electrochemically. Adds potential further functionality to the initial catenane product.
Creativity in Action!
Structurally elaborating the system
Formation of a [3]-catenane

A related strategy to that used for the 2-catenane

Synthesis of a mixed Cu(I)/Ru(II) rotaxane and catenane

- Cu(I) prefers 2 x phen while Ru(II) prefers 2 x terpy.
- Cu(I) added first then Ru(II).
- Can remove Cu(I) with CN⁻ (MeOH/Water), Ru(II) remains intact.

Why chose bis(terpyridine)Ruthenium(II) groups for the ‘stoppers’?

- \([\text{Ru(terpy)}_2]^{2+}\) is sufficiently bulky to inhibit macrocycle loss.
- Ruthenium(II) has a low spin \(d^6\) electronic configuration in \([\text{Ru(terpy)}_2]^{2+}\) (diamagnetic).
- Ruthenium favours 6-coordinate (octahedral) coordination.
- Large crystal field stabilisation and crystal field activation energies – low spin complexes thermodynamically stable and kinetically inert.
- \([\text{Ru(terpy)}_2]^{2+}\) - coordination chemistry is well documented; for example, this group is photoactive.
Formation of Polyrotaxanes

Insert shows the structure of the dinuclear Cu(I) species for the system with $n = 0$, $R = \text{Ph}$.

X-ray structure

Note alternating orientation of phenanthroline fragments.

Self-assembled, rigid-rack di- and tri-rotaxanes.

Increasing the functionality - Exploiting the redox properties of copper
Redox-Controlled Ring ‘Gliding’ in a Cu(I)-Containing [2]-Catenane

Each step gives a different coordination number

Three different coordination geometries

Mechanical motion will be slow in terms of molecular electronics

Why does this work?

Cu(I) \((d^{10})\) likes tetrahedral coordination
Cu(II) \((d^9)\) likes octahedral coordination

- Rings contain bipy (bidentate) and terpy (tridentate) sites
- Redox control of ring gliding employed through 3 different geometries
- Each step a different coordination no.
- Mechanical motion – switch
A Pseudo-Rotaxane Capable of Switching Between Two Arrangements Under Redox Control

Cu(I) (4-coordinate) - e⁻ → Cu(II) (5-coordinate)
Here Cu(II) prefers 5-coordination

A ‘Lock and Key’ System
Formation of a palladium-containing [2]-catenane promoted by a high salt (sodium nitrate) concentration

Cavity is hydrophobic

Forms in quantitative yield

Medium effect in D$_2$O

Operation of a Molecular ‘Lock’

What is important here?

- Remarkable medium effect (Fujita) - polar D$_2$O solution containing sodium nitrate pushes equilibrium towards catenane \rightarrow 99%! (even at reasonably low NaNO$_3$ concentrations)

- Presumably interlinks to gain lipophilic environment when polarity is increased.

- Nitrate promotes ligand exchange on platinum.

- Can freeze as catenane by cooling solution
The Building Block Approach
Molecular Building Blocks for Forming 2D and 3D Molecular structures

Molecular Components:
Corner units, common angles exhibited: 60°, 90°, 109.5°, 120°, 180°
Combine with linear and other shaped components
Combinations can be used to build both simple and more complex structures – limited only by the imagination of the practitioner!

Common Shapes:
Triangles, squares, polygons, tetrahedra, octahedra, cubes, higher polyhedra

See, for example: S. Leininger, B. Olenyuk and P.J. Stang, Chem. Rev., 2000, 100, 853
Some Simple Metallo-Supramolecular Architectures (Metals at Corners)

Christou – Fujita – Raymond – Saalfrank – Soldatov – Stang
A typical example - construction of a larger metallo-supramolecular architecture

\[
\begin{align*}
2 \begin{array}{c}
 \text{Cu} \\
\end{array}
\end{align*}
\begin{array}{c}
 \text{Cu} \\
\end{array}
\begin{array}{c}
 \text{Cu} \\
\end{array}
\]
\[
+
\begin{array}{c}
 \text{Cu} \\
\end{array}
\begin{array}{c}
 \text{Cu} \\
\end{array}
\begin{array}{c}
 \text{Cu} \\
\end{array}
\]
\[
\rightarrow
\begin{array}{c}
 \text{Cu} \\
\end{array}
\begin{array}{c}
 \text{Cu} \\
\end{array}
\begin{array}{c}
 \text{Cu} \\
\end{array}
\]
\[
\begin{array}{c}
 \text{Cu} \\
\end{array}
\begin{array}{c}
 \text{Cu} \\
\end{array}
\begin{array}{c}
 \text{Cu} \\
\end{array}
\]
\text{trigonal prism}

=
\begin{array}{c}
 \text{pyridine} \\
\end{array}
\begin{array}{c}
 \text{pyridine} \\
\end{array}
\begin{array}{c}
 \text{imidazole} \\
\end{array}
A Metallo-Square
A Molecular Square Derived from Pt[1,2-diaminoethane)(NO₃)₂]

- Rigid sides and corner units
- Pt(II) complex took one month to equilibrate
- Pd(II) analog also synthesised – more labile (90% yield)
- Formed from di-nitro substituted metal complex. Nitro ligands are labile
- Some cyclic trimer also formed

Extended Molecular Squares

Some examples shown to bind electron-rich aromatic guests and anions

Design considerations

- Pd(II) and Pt(II) are square-planar d^8 and kinetically inert (especially platinum)

- Diamagnetic - can follow by proton NMR – may take weeks to reach equilibrium for platinum

- As side unit becomes more flexible, tendency to for corresponding triangle or even an ellipse to form (entropy driven)

- Flexibility means that 90° may be approximately maintained at the palladium or platinum corner units when triangle (or ellipse) generated
Porphyrin-containing Molecular Squares

Case study:

Designing self-assembled metallo-structures based on bis-\(\beta\)-diketonato ligands
Use a flexible linker – get simple dinuclear metalloccycle with square planar copper(II)

What if the linker is not flexible?

Ligand Geometry Affects Supramolecular Architecture

Because of the sp^2 hybridisation there is a significant difference in the shape of the meta substituted ligand (1) compared with the para.

Christou – Lindoy - Ripmeester
Complex Design: *Meta vs Para Ligands Interacting with a Square-Planar Divalent Metal*

Comparing the geometries of 1:1 square planar copper complexes:

- *meta* → aligned
- *para* → triangular
One Cu(II) center is 5-coordinate in the solid state

[Cu₃(L-H₂)₃(DMF)]

Clegg et al., *Dalton Trans*, 2004, in press
The Triangular Structures of the Ni(II) (low-spin) and Cu(II) Complexes Shown

Para-substitution and sp² hybridisation favours triangle with square-planar metal ion

X-ray structure

What will happen with an Octahedral metal ion?
1,3-Aromatic linker gives triple helicate structure with an octahedrally coordinated Metal [Mn(III)]

For 1,4-benzo derivative a tetrahedron is generated with an octahedral metal

Estimated (vdW) cavity size ca. 25 Å³

[Fe₄(L-2H)₆].THF

Clegg et al., Dalton Trans, 2004, in press
Two Further Cage-Like Assemblies Based on Octahedral Metals
X-Ray Structure of a Tetrahedral Metallo-Cage Including a Tetrafluoroborate Guest

- Fumaronitrile (NCCH$_2$CH$_2$CN) is the connecting ligand
- Formation suggested to be templated by the presence of the tetrahedral BF$_4^-$ ion
- B-F bonds point at Fe(II) ions
- Plus five charge aids inclusion of BF$_4^-$

Assembly of a Supramolecular Cube

- Forms from 20 components by self-assembly over 1 month
- \([9]-ane\) is the 9-membered 3S-donor macrocycle (L) that coordinates around one octahedral face of precursor \([\text{RuL(DMSO)Cl}_2]\)

HELICIES
Double Helicities – Use of a Tetrahedral Metal Ion

Helical arrangements—once again stereochemical preferences of both the metal and ligand are important

Cu(I) and Ag(I) are favoured ions

Cooperative binding shown to occur ($K_2 > K_1$)

Double-Helical Structures of Complexes of Type $[\text{M}_3\text{L}_2]$

Use of two tris-tridentate strands plus an octahedral metal ion

Alternatively an Octahedral Metal can generate a Triple Helix

Structure of a triple-helical complex of high-spin Ni(II)

This uses a high-spin (d⁸) ion that will not give kinetically inert complexes - aids error correction

The unexpected can still happen!

A cyclic triple-helical system incorporating Fe(II)

Cyclic assembly may be templated by the presence of chloride ion – strongly bound: present in mass spectrum of compound

KNOTS
Formation of a Trefoil Knot

Precursor ligands are bis-1,10-phenanthroline derivatives

Simpliest ‘three-crossing’ knot

Linking ends of dinuclear helix then removing metals—three possible products:

- Trefoil knot
- Large ring
- Two non-linked small rings
X-ray Structure a double-helical complex of Cu(I) forming a trefoil knot

Each Cu(I) has a distorted tetrahedral geometry

Molecular Racks, Grids and Ladders

Some further systems illustrating the principles
Molecular Rack, Ladder and Grid

Two metal environments

Three metal environments

Rack Ladder 3 x3 Grid

Redox modulated communication between metal centres?
MOLECULAR RACKS

- Ru(II) is octahedral
- Have confirmed structure by X-ray diffraction
- Electronic mobility (conjugation)

A MOLECULAR LADDER

Tris-Bipy + bipyrimidine + Cu(I) gave self-assembly of ladder

A Polynuclear grid based on a bis-bidentate Ligand

A planar arrangement of 4 Cu(I) at corners of a rhombus – 2 ligands above plane, 2 ligands below. Ligands parallel and offset, $\pi - \pi$ stacked (3.47 Å)

A 3 x 2 Grid Incorporating Six Silver(I) Ions

- 2 x 3 grid – a rhombus not a square
- Solvent molecules shown to be trapped in cavities
- For 3:3 grid ^{109}Ag NMR shows 4:4:1 singlets

Prudent to employ a non-coordinating anion (here triflate) in synthesis

A Cylindrical Supramolecular Structure Assembled from Eleven Particles

- Spontaneous assembly of 11 components
- Internal cavity ~ 4 x 4 Å
- Not quite as symmetric as drawn – helical twist
- Spectrophotometric titrations give information on positive cooperativity in this case
- Longer towers have subsequently also been constructed

A Final Porphyrin System

(Exotica)
Zinc Porphyrin-Containing Assembled Array Formed Using Tris(pyridylaceto-acetato)aluminium(III) as a Template

Final comment

• While the development of ‘organic’ supramolecular components has continued to develop at a rapid rate, researchers have been much more conservative in the utilisation of the vast range of metal ions (in their various oxidation states) provided by nature.

• *Each and every metal ion represents a package of structural and electronic information* whose uniqueness may potentially be harnessed to a given supramolecular enterprise.

• Exploitation of this aspect provides an enormous resource for future research.
Acknowledgement

Many of the figures used in this workshop are taken from the monograph: *Self-Assembly in Supramolecular Systems*, L. F. Lindoy and I. M. Atkinson, 2000, RSC, Cambridge, UK and are reproduced with permission of the Royal Society of Chemistry