Figure 5.1 (a) The magnetic dipolar field B_z at point P of a sample induced by a magnetic moment m under the external magnetic field B_0. δ is the angle between B_0 and the dipolar vector D_R, which depends on a distance R from m. (b) The MAS effect on the dipolar interaction, where δ becomes a time-dependent component with magic-angle θ_m and β angle between the rotation axis and D_R [eqn (5.4)].

$$B_z = -\frac{\Delta \chi a^3}{3 R^3} B_0 \left(3 \cos^2 \delta - 1 \right)$$
Figure 1. Schematic of a HR-MAS stator with a magic angle gradient along the rotor spinning axis.
Figure 4. The tools and inserts used for HR-MAS NMR. These include A) the specialized tool for screw cap insertion, B) the sealing screw cap, C) the upper Teflon® insert, D) lower Teflon® insert for 30 µL volume, E) screw for insertion/extraction of top insert, F) top Kel-F® insert, G) bottom Kel-F® insert for 12 µL sample volume, H) plug for disposable insert, I) disposable 30 uL Kel-F® insert, J) 4 mm rotor cap, K) disposable inserted partially in a 4 mm rotor, L) 4 mm zirconia MAS rotor. All these parts are for the Bruker HR-MAS system, and may vary between vendors.
Figure 2. The improved resolution observed using 1H HR-MAS NMR for the A) methanol swollen anion exchange membrane, and B) the CDC$_3$ swollen pBAN (polyButadiene-AcryloNitrile) polymer.
Figure 1.1 1H NMR spectra of \mathcal{L}-histidine·HCl·H$_2$O under ultrafast MAS at a magnetic field $B_0 = 14.1$ T.
Figure 3. The gradient 2D 1H HR-MAS NMR COSY spectrum for the ionic liquid [MBPyrr]·[TFSI]- adsorbed into an inorganic aluminum oxide membrane. Even though the individual couplings were not resolvable, these types of correlation experiments can still be realized under HR-MAS.
Figure 5.2 1H HR-MAS spectra of 10 mg rat brain tissue. The NMR spectra were recorded with a t_2-cpmg experiment at 500 MHz at 285 K under different MAS conditions: (top) under a non-sample-spinning condition at 0 Hz, and (bottom) at a sample-spinning of 2500 Hz. The tissue was packed inside a standard Bruker disposable Kel-F insert, which is used to enhance the sampling throughput and spectral repeatability.
a) HR-MACS μcoil
(sample-mass 250 μg)

b) 1 mm HRμMAS probe
(sample-mass 490 μg)

- chicken liver
- pig liver
- mouse brain biopsy
- mouse brain extract

'H chemical shift / ppm
Figure 2 HR-MAS 1H-13C gHSQC 2D NMR spectrum of olive leaves of Koroneiki variety. Numbers correspond to oleanolic acid protons, while f denotes fatty acid signals.
Figure 3 Expansions of the 1H HR-MAS NMR spectrum of olive leaves: vinyl proton H-12 (top left), methyl group H-27(top right), hydroxyl region (bottom).
400 MHz HR MAS 1H NMR spectra of persimmon during the process of development (from September (S) to March (M)).
Figure 2. 1H HRMAS NMR spectrums of Parmigiano Reggiano cheese [12]